Advertisements
Advertisements
Question
Explain why the inductance of two coils connected in parallel is less than the inductance of either coil.
Solution 1
- For a parallel combination of two coils, the current through each parallel inductor is a fraction of the total current and the voltage across each parallel inductor is the same.
- As a result, a change in total current will result in less voltage dropped across the parallel array than for any one of the individual inductors.
- There will be less voltage drop across parallel inductors for a given rate of change in current than for any of the individual inductors.
- Less voltage for the same rate of change in current results in less inductance.
- Thus, the total inductance of two coils is less than the inductance of either coil.
Solution 2
When two inductors with inductances L1 and L2 are connected in parallel, the equivalent inductance is given by
`1/"L"_"equivalent" = 1/"L"_1 + 1/"L"_2`
which is less than the individual inductance value L1 and L2.
As a result, the inductance of two parallel coils is smaller than the inductance of either coil.
APPEARS IN
RELATED QUESTIONS
Explain the phenomenon of self induction
In a given coil of self-inductance of 5 mH, current changes from 4 A to 1 A in 30 ms. Calculate the emf induced in the coil.
Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.
Define self-inductance. Write its SI units.
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of induced voltages ?
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the energies stored in the two coils at a given instant ?
Define self-inductance of a coil. Show that magnetic energy required to build up the current I in a coil of self inductance L is given by `1/2 LI^2`
Derive the expression for the self-inductance of a long solenoid of cross sectional area A and length l, having n turns per unit length.
Define self inductance. Write its S.I. units.
Derive an expression for self inductance of a long solenoid of length l, cross-sectional area A having N number of turns.
A constant current i is maintained in a solenoid. Which of the following quantities will increase if an iron rod is inserted in the solenoid along its axis?
(a) magnetic field at the centre
(b) magnetic flux linked with the solenoid
(c) self-inductance of the solenoid
(d) rate of Joule heating.
An average emf of 20 V is induced in an inductor when the current in it is changed from 2.5 A in one direction to the same value in the opposite direction in 0.1 s. Find the self-inductance of the inductor.
An inductor-coil carries a steady-state current of 2.0 A when connected across an ideal battery of emf 4.0 V. If its inductance is 1.0 H, find the time constant of the circuit.
A coil having inductance 2.0 H and resistance 20 Ω is connected to a battery of emf 4.0 V. Find (a) the current at the instant 0.20 s after the connection is made and (b) the magnetic field energy at this instant.
An inductor of inductance 5.0 H, having a negligible resistance, is connected in series with a 100 Ω resistor and a battery of emf 2.0 V. Find the potential difference across the resistor 20 ms after the circuit is switched on.
Consider a small cube of volume 1 mm3 at the centre of a circular loop of radius 10 cm carrying a current of 4 A. Find the magnetic energy stored inside the cube.
A long wire carries a current of 4.00 A. Find the energy stored in the magnetic field inside a volume of 1.00 mm3 at a distance of 10.0 cm from the wire.
Answer the following question.
When an inductor is connected to a 200 V dc voltage, a current at 1A flows through it. When the same inductor is connected to a 200 V, 50 Hz ac source, only 0.5 A current flows. Explain, why? Also, calculate the self-inductance of the inductor.
Obtain an expression for the self-inductance of a solenoid.
Two rods of same material and volume having circular cross-section are subjected to tension T. Within the elastic limit, same force is applied to both the rods. Diameter of the first rod is half of the second rod, then the extensions of first rod to second rod will be in the ratio
When the number of turns in a coil is tripled without any change in the length of the coil, its self-inductance ______
The coefficient of self-inductance of a solenoid is 0.20 mH. If a core of soft iron of relative permeability 900 is inserted, then the coefficient of self-inductance will become nearly ______
The magnetic potential energy stored in a certain inductor is 15 mJ, when the current in the inductor is 40 mA. This inductor is of inductance ____________.
Consider a solenoid carrying supplied by a source with a constant emf containing iron core inside it. When the core is pulled out of the solenoid, the change in current will ______.
An e.m.f. of 10 volt is produced by a self inductance when the current changes at a steady rate from 6 A to 4 A in 1 millisecond. The value of self inductance is ____________.
A toroidal solenoid with air core has an average radius 'R', number of turns 'N' and area of cross-section 'A'. The self-inductance of the solenoid is (Neglect the field variation cross-section of the toroid)
Magnetic flux of 12 microweber is linked with a coil. When current of 3 mA flows through it, the self inductance of the coil is ____________.
A graph of magnetic flux `phi` versus current (I) is shown for four inductors A, B, C, D. Smaller value of self inductance is for inductor ____________.
A resistance of 100 `Omega`, inductor of self-inductance`(4/pi^2)` H and a capacitor of unknown capacitance are connected in series to an a.c. source of 200 V and 50 Hz. When the current and voltage are in phase, the capacitance and power dissipated is respectively ____________.
When the current in a coil changes from 2 amp. to 4 amp. in 0.05 sec., an e.m.f. of 8 volt is induced in the coil. The coefficient of self inductance of the coil is ______.
Two coils of self inductances 2 mH and 8 mH are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is ______.
An air-cored solenoid with length 30 cm, area of cross-section 25 cm2 and number of turns 800, carries a current of 2.5 A. The current is suddenly switched off in a brief time of 10-3s. Ignoring the variation in magnetic field near the ends of the solenoid, the average back emf induced across the ends of the open switch in the circuit would be ______.
Energy needed to establish an alternating current I in a coil of self-inductance L is
An inductor may store energy in
What is the unit of self-inductance of a coil?
A coil of wire of a certain radius has 600 turns and a self-inductance is 108 mH. The self-inductance of a second similar coil of 500 turns will be:
The self inductance L of a solenoid of length l and area of cross-section A, with a fixed number of turns N increases as ______.
A current of 1A flows through a coil when it is connected across a DC battery of 100V. If the DC battery is replaced by an AC source of 100 V and angular frequency of 100 rad s-1, the current reduces to 0.5 A. Find
- the impedance of the circuit.
- self-inductance of coil.
- Phase difference between the voltage and the current.
An air-cored solenoid, 40 cm long and of cross-sectional area 5 cm2, is tightly wound with 400 turns of copper wire and carries a steady current of 10 A. (a) Calculate the self-inductance of the solenoid. (b) Find the emf induced if the current in the solenoid decreases to zero in 0.2 s.
Obtain an expression for the self inductance of a solenoid.
A toroid of a circular cross-section of radius 0.05 m has 2000 windings and a self-inductance of 0.04 H. What is (a) the current through the windings when the energy in its magnetic field is 2 × 10−6 J and (b) the central radius of the toroid?
What is meant by magnetic coupling coefficient?
The current in a coil changes from 50A to 10A in 0.1 second. The self inductance of the coil is 20H. The induced e.m.f. in the coil is ______.