English

The current in a coil changes from 50A to 10A in 0.1 second. The self inductance of the coil is 20H. The induced e.m.f. in the coil is ______. - Physics

Advertisements
Advertisements

Question

The current in a coil changes from 50A to 10A in 0.1 second. The self inductance of the coil is 20H. The induced e.m.f. in the coil is ______.

Options

  • 800V

  • 6000V

  • 7000V

  • 8000V

MCQ
Fill in the Blanks

Solution

The current in a coil changes from 50A to 10A in 0.1 second. The self-inductance of the coil is 20H. The induced e.m.f. in the coil is 8000V.

Explanation:

The induced e.m.f. in the coil is given by the formula:

e.m.f. = `-L(DeltaI)/(Deltat)`

Where,

L= 20H (self-inductance)

ΔI = final​ − Iinitial ​= 10A − 50A = −40A,

Δt = 0.1 s.

Substituting the values:

e.m.f. = `-20 xx (-40)/0.1 = 20 xx 400 8000 V`

The magnitude of the induced emf is 8000 V.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

Explain the phenomenon of self induction


Current in a circuit falls from 5.0 A to 0.0 A in 0.1 s. If an average emf of 200 V induced, give an estimate of the self-inductance of the circuit.


Define self-inductance. Write its SI units.


The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of induced voltages ?


The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of  the currents ?


The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the energies stored in the two coils at a given instant ?


Define self inductance. Write its S.I. units.


Derive an expression for self inductance of a long solenoid of length l, cross-sectional area A having N number of turns.


Consider the self-inductance per unit length of a solenoid at its centre and that near its ends. Which of the two is greater?


A constant current i is maintained in a solenoid. Which of the following quantities will increase if an iron rod is inserted in the solenoid along its axis?
(a) magnetic field at the centre
(b) magnetic flux linked with the solenoid
(c) self-inductance of the solenoid
(d) rate of Joule heating.


An average emf of 20 V is induced in an inductor when the current in it is changed from 2.5 A in one direction to the same value in the opposite direction in 0.1 s. Find the self-inductance of the inductor.


A magnetic flux of 8 × 10−4 weber is linked with each turn of a 200-turn coil when there is an electric current of 4 A in it. Calculate the self-inductance of the coil.


A coil having inductance 2.0 H and resistance 20 Ω is connected to a battery of emf 4.0 V. Find (a) the current at the instant 0.20 s after the connection is made and (b) the magnetic field energy at this instant.


What are the values of the self-induced emf in the circuit of the previous problem at the times indicated therein?


A long wire carries a current of 4.00 A. Find the energy stored in the magnetic field inside a volume of 1.00 mm3 at a distance of 10.0 cm from the wire.


Answer the following question.
When an inductor is connected to a 200 V dc voltage, a current at 1A flows through it. When the same inductor is connected to a 200 V, 50 Hz ac source, only 0.5 A current flows. Explain, why? Also, calculate the self-inductance of the inductor. 


Choose the correct option

A current through a coil of self-inductance 10 mH increases from 0 to 1 A in 0.1 s. What is the induced emf in the coil?


A coil of self-inductance 3 H carries a steady current of 2 A. What is the energy stored in the magnetic field of the coil? 


Obtain an expression for the self-inductance of a solenoid.


When a coil is connected to a D.C. source of e.m.f. 12 volt, then a current of 4 ampere flows in it. If the same coil is connected to a 12 volt, 25 cycle/s A.C sources, then the current flowing in it is 2.4 A. The self-inductance of the coil will be ______


Two rods of same material and volume having circular cross-section are subjected to tension T. Within the elastic limit, same force is applied to both the rods. Diameter of the first rod is half of the second rod, then the extensions of first rod to second rod will be in the ratio


When the number of turns in a coil is tripled without any change in the length of the coil, its self-inductance ______


A toroidal solenoid with air core has an average radius 'R', number of turns 'N' and area of cross-section 'A'. The self-inductance of the solenoid is (Neglect the field variation cross-section of the toroid)


A graph of magnetic flux `phi` versus current (I) is shown for four inductors A, B, C, D. Smaller value of self inductance is for inductor ____________.


When the current in a coil changes from 2 amp. to 4 amp. in 0.05 sec., an e.m.f. of 8 volt is induced in the coil. The coefficient of self inductance of the coil is ______.


The coefficient of self inductance of a solenoid is 0.18 mH. If a core of soft iron of relative permeability 900 is inserted, then the coefficient of self inductance will become nearly ______.


Two solenoids of same cross-sectional area have their lengths and number of turns in ratio of 1 : 2 both. The ratio of self-inductance of two solenoids is ______.


When current i passes through an inductor of self-inductance L, energy stored in it is 1/2. L i2. This is stored in the ______.


A coil is wound on a frame of rectangular cross-section. If all the linear dimensions of the frame are increased by a factor 2 and the number of turns per unit length of the coil remains the same, self-inductance of the coil increases by a factor of ______.


The self-inductance associated with a coil is independent of ______.


The self-inductance of a coil is a measure of ______.

Choke coil works on the principle of ______.

Production of induced e.m.f. in a coil due to the changes of current in the same coil is ______.

The self-inductance associated with a coil is independent of ______.

Energy needed to establish an alternating current I in a coil of self-inductance L is


An inductor may store energy in


An average induced emf of 0.20 V appears in a coil when the current in it is changed from 5A in one direction to 5A in the opposite direction in 0.20 sec. Find the self induction of the coil.


The self-inductance depends upon ______.


In a fluorescent lamp choke (a small transformer) 100 V of reverse voltage is produced when the choke current changes uniformly from 0.25 A to 0 in a duration of 0.025 ms. The self-inductance of the choke (in mH) is estimated to be ______.


Calculate the self-inductance of a coil using the following data obtained when an AC source of frequency `(200/pi)` Hz and a DC source are applied across the coil.

AC Source
S.No. V (volts) I (A)
1 3.0 0.5
2 6.0 1.0
3 9.0 1.5
DC Source
S.No. V (volts) I (A)
1 4.0 1.0
2 6.0 1.5
3 8.0 2.0

A current of 1A flows through a coil when it is connected across a DC battery of 100V. If the DC battery is replaced by an AC source of 100 V and angular frequency of 100 rad s-1, the current reduces to 0.5 A. Find

  1. the impedance of the circuit.
  2. self-inductance of coil.
  3. Phase difference between the voltage and the current.

State the factors on which the magnetic coupling coefficient of two coils depends.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×