Advertisements
Advertisements
प्रश्न
A constant current i is maintained in a solenoid. Which of the following quantities will increase if an iron rod is inserted in the solenoid along its axis?
(a) magnetic field at the centre
(b) magnetic flux linked with the solenoid
(c) self-inductance of the solenoid
(d) rate of Joule heating.
उत्तर
(a) magnetic field at the centre
(b) magnetic flux linked with the solenoid
(c) self-inductance of the solenoid
Iron rod has high permeability. When it is inserted inside a solenoid the magnetic field inside the solenoid increases. As magnetic field increases inside the solenoid thus the magnetic flux also increases. The Self-inductance (L) of the coil is directly proportional to the permeability of the material inside the solenoid. As the permeability inside the coil increases. Therefore, the self-inductance will also increase.
APPEARS IN
संबंधित प्रश्न
Define the coefficient of self-induction.
A toroidal solenoid with air core has an average radius of 15 cm, area of cross-section 12 cm2 and has 1200 turns. Calculate the self-inductance of the toroid. Assume the field to be uniform across the cross-section of the toroid.
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of induced voltages ?
An average emf of 20 V is induced in an inductor when the current in it is changed from 2.5 A in one direction to the same value in the opposite direction in 0.1 s. Find the self-inductance of the inductor.
A coil having inductance 2.0 H and resistance 20 Ω is connected to a battery of emf 4.0 V. Find (a) the current at the instant 0.20 s after the connection is made and (b) the magnetic field energy at this instant.
Explain why the inductance of two coils connected in parallel is less than the inductance of either coil.
Obtain an expression for the self-inductance of a solenoid.
A toroidal solenoid with air core has an average radius 'R', number of turns 'N' and area of cross-section 'A'. The self-inductance of the solenoid is (Neglect the field variation cross-section of the toroid)
Magnetic flux of 12 microweber is linked with a coil. When current of 3 mA flows through it, the self inductance of the coil is ____________.
A resistance of 100 `Omega`, inductor of self-inductance`(4/pi^2)` H and a capacitor of unknown capacitance are connected in series to an a.c. source of 200 V and 50 Hz. When the current and voltage are in phase, the capacitance and power dissipated is respectively ____________.
When current i passes through an inductor of self-inductance L, energy stored in it is 1/2. L i2. This is stored in the ______.
If both the number of turns and core length of an inductor is doubled keeping other factors constant, then its self-inductance will be ______.
An inductor may store energy in
The self inductance L of a solenoid of length l and area of cross-section A, with a fixed number of turns N increases as ______.
The inductance of a solenoid L having diameter d. Let n be the number of turns per unit length. The inductance per unit length near the middle of a solenoid is ______.
(Assume that, l = current passes through the turns, µ0 = Permeability of vacuum)
A toroid of a circular cross-section of radius 0.05 m has 2000 windings and a self-inductance of 0.04 H. What is (a) the current through the windings when the energy in its magnetic field is 2 × 10−6 J and (b) the central radius of the toroid?