Advertisements
Advertisements
प्रश्न
Answer briefly.
State the expression for apparent frequency when source of sound and listener are
- moving towards each other
- moving away from each other
उत्तर
- Let, n0 = actual frequency of the source.
n = apparent frequency of the source.
v = velocity of sound in air.
vs = velocity of the source.
vL = velocity of the listener. - Apparent frequency heard by the listener is given by, n =`"n"_0 (("v" +- "v"_"L")/("v" bar+ "v"_"s"))`
Where upper signs (+ ve in numerator and -ve in denominator) indicate that the source and observer move towards each other. Lower signs (-ve in numerator and +ve in denominator) indicate that the source and listener move away from each other. - If source and listener are moving towards each other, then apparent frequency is given by,
n = `"n"_0(("v" + "v"_"L")/("v" - "v"_"s"))` i.e., apparent frequency increases. - If source and listener are moving away from each other, then apparent frequency is given by,
n = `"n"_0(("v" - "v"_"L")/("v" + "v"_"s"))` i.e., apparent frequency decreases.
APPEARS IN
संबंधित प्रश्न
A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium. (a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propagation? (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after every 20 s), is the frequency of the note produced by the whistle equal to 1/20 or 0.05 Hz
The engine of a train sounds a whistle at frequency v. The frequency heard by a passenger is
Answer briefly.
What is Doppler effect?
Answer briefly.
State the expression for apparent frequency when the source is stationary and the listener is
- moving towards the source
- moving away from the source
Solve the following problem.
A police car travels towards a stationary observer at a speed of 15 m/s. The siren on the car emits a sound of frequency 250 Hz. Calculate the recorded frequency. The speed of sound is 340 m/s.
The sound emitted from the siren of an ambulance has a frequency of 1500 Hz. The speed of sound is 340 m/s. Calculate the difference in frequencies heard by a stationary observer if the ambulance initially travels towards and then away from the observer at a speed of 30 m/s.
What is meant by the Doppler effect?
Discuss the following case-
Observer in motion and Source at rest.
- Observer moves towards Source
- Observer resides away from the Source
The speed of a wave in a certain medium is 900 m/s. If 3000 waves passes over a certain point of the medium in 2 minutes, then compute its wavelength?
N tuning forks are arranged in order of increasing frequency and any two successive tuning forks give n beats per second when sounded together. If the last fork gives double the frequency of the first (called as octave), Show that the frequency of the first tuning fork is f = (N – 1)n.
A sound source and listener are both stationary and a strong wind is blowing. Is there a Doppler effect?
A source of sound is moving with constant velocity of 30 mis emitting a note of frequency 256 Hz. The ratio of frequencies observed by a stationary observer while the source is approaching him and after it crosses him is ______. (speed of sound in air = 330 m/s)
An observer moves towards a stationary source of sound with a velocity one-fifth of the velocity of sound. The percentage increase in the apparent frequency heard by the observer will be ______.
The pitch of the whistle of an engine appears to drop to`(5/6)^"th"` of original value when it passes a stationary observer. If the speed of sound in air is 350 m/s then the speed of engine is ____________.
The difference between the apparent frequency of a stationary source of sound as perceived by the observer during its approach and recession is 2% of the frequency of the source. If the speed of sound in air is 300 ms–1, then the velocity of the observer is
A train whistling at constant frequency is moving towards a station at a constant speed V. The train goes past a stationary observer on the station. The frequency n ′ of the sound as heard by the observer is plotted as a function of time t (figure). Identify the expected curve.
A train, standing in a station yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with a speed of 10 m/s. Given that the speed of sound in still air is 340 m/s ______.
- the frequency of sound as heard by an observer standing on the platform is 400 Hz.
- the speed of sound for the observer standing on the platform is 350 m/s.
- the frequency of sound as heard by the observer standing on the platform will increase.
- the frequency of sound as heard by the observer standing on the platform will decrease.
A sitar wire is replaced by another wire of same length and material but of three times the earlier radius. If the tension in the wire remains the same, by what factor will the frequency change?
A train standing at the outer signal of a railway station blows a whistle of frequency 400 Hz still air. The train begins to move with a speed of 10 ms–1 towards the platform. What is the frequency of the sound for an observer standing on the platform? (sound velocity in air = 330 ms–1)
When a sound source of frequency n is approaching a stationary observer with velocity u than the apparent change in frequency is Δn1 and when the same source is receding with velocity u from the stationary observer than the apparent change in frequency is Δn2. Then ______.
A whistle producing sound waves of frequencies 9500 Hz and above is approaching a stationary person with speed v ms-1. The velocity of sound in air is 300 ms-1. If the person can hear frequencies up to a maximum of 10,000 HZ, the maximum value of v up to which he can hear the whistle is ______.