Advertisements
Advertisements
प्रश्न
Answer the following in one or two sentences.
For the reaction,
\[\ce{CH3Br_{(aq)} + OH^-_{ (aq)} -> CH3OH^-_{ (aq)} + Br^-_{ (aq)}}\], rate law is rate = k`["CH"_3"Br"]["OH"^-]`
What is the change in rate if concentrations of both reactants are doubled?
उत्तर
For the reaction
\[\ce{CH3Br_{(aq)} + Br^-_{ (aq)} -> CH3OH_{ (aq)} + Br^-_{ (aq)}}\]
Rate = k`["CH"_3"Br"]["OH"^-]`
If concentrations of `"CH"_3"Br"` and `"OH"^-` are doubled, rate will increase by a factor of 4.
APPEARS IN
संबंधित प्रश्न
Choose the most correct option.
The order of the reaction for which the units of the rate constant are mol dm-3 s-1 is _______.
Choose the most correct option.
The rate constant for the reaction \[\ce{2N2O5_{(g)} -> 2N2O4_{(g)} + O2_{(g)}}\] is `4.98 xx 10^-4 "s"^-1`. The order of reaction is _____________.
Choose the most correct option.
Slope of the graph ln[A]t versus t for first-order reaction is _________.
What is the half life of a first order reaction if time required to decrease concentration of reactant from 0.8 M to 0.2 M is 12 h?
Order of reaction for which unit of rate constant is mol dm–3 s–1 is _______.
For the reaction \[\ce{2NO_{(g)} + 2H_{2(g)} -> N_{2(g)} + 2H2O_{(g)}}\],
The rate law is, rate = k[NO]2 [H2].
What is the overall order of reaction?
Define order of reaction with suitable examples.
A reaction occurs in the following steps:
Step 1: \[\ce{NO_{2(g)} + F_2 -> NO2F_{(g)} + F_{(g)}}\] (slow)
Step 2: \[\ce{F_{(g)} + NO_{2(g)} -> NO_2F}\] (Fast)
- Write the equation of overall reaction.
- Write the rate law.
- Identify reaction intermediate.
In a first-order reaction A → B, 60% of a given sample of a compound decomposes in 45 mins. What is the half-life of reaction? Also, write the rate law equation for the above first-order reaction.
In a hypothetical reaction,
\[\ce{2A + B -> Products}\]. Rate = k [A]2 [B]
Molar concentration of 'B' is kept constant and molar concentration of 'A' is tripled, then the rate of reaction will ____________.
The rate constant of a first order reaction whose half-life is 480 seconds, is ____________.
The rate law for a reaction between the substances A and B is given by, rate = k[A]n [B]m. On halving the concentration of A and doubling the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as ____________.
For a hypothetical reaction \[\ce{A + B -> C}\], it is found that doubling the concentration of A increases the rate by 8 times and doubling the concentration of B increases the rate by 4 times. The overall order of the reaction is ____________.
The order of the reaction occurring by following mechanism should be:
(i) \[\ce{A2 + B2 -> AB2 + A (slow)}\]
(ii) \[\ce{A + B2 -> AB2 (fast)}\]
The rate law for the reaction \[\ce{A + B + C -> Product}\] is expressed as Rate = k[A]2 [B]1 [C]0. What is the overall order of the reaction?
The rate law for the reaction \[\ce{2NO_{(g)} + O2_{(g)} -> 2NO2_{(g)}}\] is rate = k[NO]2 [O2] , then which among the following statement is correct?
The reaction \[\ce{A + B -> P}\], is second order in A and first order in B. What is the rate law for the reaction?
What is the order of reaction for decomposition of gaseous acetaldehyde?
What is the molecularity and order of the following reaction if rate law is, rate = k[O3][O] respectively.
\[\ce{O_{3(g)} + O_{(g)} -> 2O_{2(g)}}\]
For the reaction \[\ce{4NH3 + 5O2 -> 4NO + 6H2O}\], the rate of disappearance of NH3 is 3.6 × 10-3 M/s. What is the rate of formation of water?
Which of the following unit is used to express the rate of a reaction?
Write the rate law for the following reaction:
A reaction that is second order in NO and first order in Br2.