Advertisements
Advertisements
Question
Answer the following in one or two sentences.
For the reaction,
\[\ce{CH3Br_{(aq)} + OH^-_{ (aq)} -> CH3OH^-_{ (aq)} + Br^-_{ (aq)}}\], rate law is rate = k`["CH"_3"Br"]["OH"^-]`
What is the change in rate if concentrations of both reactants are doubled?
Solution
For the reaction
\[\ce{CH3Br_{(aq)} + Br^-_{ (aq)} -> CH3OH_{ (aq)} + Br^-_{ (aq)}}\]
Rate = k`["CH"_3"Br"]["OH"^-]`
If concentrations of `"CH"_3"Br"` and `"OH"^-` are doubled, rate will increase by a factor of 4.
APPEARS IN
RELATED QUESTIONS
Choose the most correct option.
The rate constant for the reaction \[\ce{2N2O5_{(g)} -> 2N2O4_{(g)} + O2_{(g)}}\] is `4.98 xx 10^-4 "s"^-1`. The order of reaction is _____________.
The time required for 90% completion of a certain first-order reaction is t. The time required for 99.9% completion will be _________.
Choose the most correct option.
Slope of the graph ln[A]t versus t for first-order reaction is _________.
Choose the most correct option.
The reaction, \[\ce{3ClO- -> ClO^-3 + 2Cl-}\] occurs in two steps,
(i) \[\ce{2ClO- -> ClO^-2}\]
(ii) \[\ce{ClO^-2 + ClO- -> ClO^-_3 + Cl-}\]
The reaction intermediate is _______.
Choose the most correct option.
Rate law for the reaction, \[\ce{2NO + Cl2 -> 2NOCl}\] is rate = k[NO2]2[Cl2]. Thus of k would increase with _____________.
Answer the following in one or two sentences.
For the reaction, \[\ce{CH3Br_{(aq)} + OH^{-}_{(aq)} -> CH3OH^{\ominus}_{(aq)} + Br^{\ominus}_{(aq)}}\], rate law is rate = \[\ce{k[CH3Br][OH^\ominus]}\]
How does reaction rate changes if \[\ce{[OH^\ominus]}\] is decreased by a factor of 5?
A First order reaction is 50% complete in 69.3 minutes. Time required for 90% completion for the same reaction is _______.
Write four key points about order of reaction.
A reaction occurs in the following steps:
Step 1: \[\ce{NO_{2(g)} + F_2 -> NO2F_{(g)} + F_{(g)}}\] (slow)
Step 2: \[\ce{F_{(g)} + NO_{2(g)} -> NO_2F}\] (Fast)
- Write the equation of overall reaction.
- Write the rate law.
- Identify reaction intermediate.
For the non-stoichiometric reaction
\[\ce{2A + B -> C + D}\], the following kinetic data were obtained in three separate experiments, all at 298 K.
Initial concentration (A) |
Initial concentration (B) |
Initial rate of formation of C (mol dm−3 s−1) |
0.1 M | 0.1 M | 1.2 × 10−3 |
0.1 M | 0.2 M | 1.2 × 10−3 |
0.2 M | 0.1 M | 2.4 × 10−3 |
The rate law for the formation of C is:
The rate law for a reaction between the substances A and B is given by, rate = k[A]n [B]m. On halving the concentration of A and doubling the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as ____________.
For a chemical reaction rate law is, rate = k[A]2[B]. If [A] is doubled at constant [B], the rate of reaction ______.
Select the rate law that corresponds to the data shown for the following reaction:
Exp. | [A] mol dm−3 |
[B] mol dm−3 |
Initial Rate mol dm−3 |
1. | 0.012 | 0.035 | 0.10 |
2. | 0.024 | 0.070 | 0.80 |
3. | 0.024 | 0.035 | 0.10 |
4. | 0.012 | 0.070 | 0.80 |
Consider the reaction \[\ce{2A + 2B -> C + 2D}\], if concentration of A is doubled at constant [B], rate increases by a factor 4. If concentration B is doubled at constant [A] the rate is doubled. Rate law of the reaction is ____________.
In the reaction \[\ce{A + B2 -> AB + B}\], the rate of reaction is directly proportional to the concentration of A and independent on the concentration of B2. What is the rate law expression?
The reaction \[\ce{A + B -> P}\], is second order in A and first order in B. What is the rate law for the reaction?
In the reaction \[\ce{2SO_{2_{(g)}} O_{2_{(g)}} -> 2SO_{3_{(g)}}}\], the rate of disappearance of SO2 is 1.28 × 10-5 M/s. What is the rate of appearance of SO3?
For the reaction \[\ce{2A + B -> 3C + D}\], which among the following is NOT the correct rate law expression?
For the reaction \[\ce{4NH3 + 5O2 -> 4NO + 6H2O}\], the rate of disappearance of NH3 is 3.6 × 10-3 M/s. What is the rate of formation of water?
Which of the following unit is used to express the rate of a reaction?
Which of the following statement is not true for a reaction having rate law r = k[H2][I2]?
The correct order of raaii of F, F-, O and O2- is ______.
Write the rate law for the following reaction:
A reaction that is zero order in A and second order in B.