Advertisements
Advertisements
प्रश्न
Choose the most correct option.
The rate constant for the reaction \[\ce{2N2O5_{(g)} -> 2N2O4_{(g)} + O2_{(g)}}\] is `4.98 xx 10^-4 "s"^-1`. The order of reaction is _____________.
विकल्प
2
1
0
3
उत्तर
The rate constant for the reaction \[\ce{2N2O5_{(g)} -> 2N2O4_{(g)} + O2_{(g)}}\] is `4.98 xx 10^-4 "s"^-1`. The order of reaction is 1.
APPEARS IN
संबंधित प्रश्न
Choose the most correct option.
Slope of the graph ln[A]t versus t for first-order reaction is _________.
Choose the most correct option.
The elementary reaction \[\ce{O3_{(g)} + O_{(g)} -> 2O2_{(g)}}\] is ___________.
Answer the following in one or two sentences.
For the reaction, \[\ce{CH3Br_{(aq)} + OH^{-}_{(aq)} -> CH3OH^{\ominus}_{(aq)} + Br^{\ominus}_{(aq)}}\], rate law is rate = \[\ce{k[CH3Br][OH^\ominus]}\]
How does reaction rate changes if \[\ce{[OH^\ominus]}\] is decreased by a factor of 5?
Answer the following in brief.
For the reaction 2A + B → products, find the rate law from the following data.
[A]/M | [B]/M | rate/M s-1 |
0.3 | 0.05 | 0.15 |
0.6 | 0.05 | 0.30 |
0.6 | 0.2 | 1.20 |
Answer the following in one or two sentences.
For the reaction,
\[\ce{CH3Br_{(aq)} + OH^-_{ (aq)} -> CH3OH^-_{ (aq)} + Br^-_{ (aq)}}\], rate law is rate = k`["CH"_3"Br"]["OH"^-]`
What is the change in rate if concentrations of both reactants are doubled?
A First order reaction is 50% complete in 69.3 minutes. Time required for 90% completion for the same reaction is _______.
The rate law relates to the rate of a chemical reaction in terms of _______.
For the reaction \[\ce{2NO_{(g)} + 2H_{2(g)} -> N_{2(g)} + 2H2O_{(g)}}\],
The rate law is, rate = k[NO]2 [H2].
What is the overall order of reaction?
For the reaction 2A + B → C, rate of disappearance of A 0.076 mol s –1.
- What is the rate of formation of C?
- What is the rate of consumption of B?
- What is the rate of the overall reaction?
In a first-order reaction A → B, 60% of a given sample of a compound decomposes in 45 mins. What is the half-life of reaction? Also, write the rate law equation for the above first-order reaction.
In a hypothetical reaction,
\[\ce{2A + B -> Products}\]. Rate = k [A]2 [B]
Molar concentration of 'B' is kept constant and molar concentration of 'A' is tripled, then the rate of reaction will ____________.
For the non-stoichiometric reaction
\[\ce{2A + B -> C + D}\], the following kinetic data were obtained in three separate experiments, all at 298 K.
Initial concentration (A) |
Initial concentration (B) |
Initial rate of formation of C (mol dm−3 s−1) |
0.1 M | 0.1 M | 1.2 × 10−3 |
0.1 M | 0.2 M | 1.2 × 10−3 |
0.2 M | 0.1 M | 2.4 × 10−3 |
The rate law for the formation of C is:
For the reaction, \[\ce{N2(g) + 3H2(g) -> 2NH3(g); \Delta H}\] is equal to ______.
The rate law for a reaction between the substances A and B is given by, rate = k[A]n [B]m. On halving the concentration of A and doubling the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as ____________.
The rate law for the reaction \[\ce{2NO_{(g)} + O2_{(g)} -> 2NO2_{(g)}}\] is rate = k[NO]2 [O2] , then which among the following statement is correct?
In the reaction, \[\ce{N2 + 3H2 -> 2NH3}\], the rate of disappearance of H2 is 0.02 Mis. The rate of appearance of NH3 is ______.
In the reaction \[\ce{2SO_{2_{(g)}} O_{2_{(g)}} -> 2SO_{3_{(g)}}}\], the rate of disappearance of SO2 is 1.28 × 10-5 M/s. What is the rate of appearance of SO3?
For the reaction \[\ce{2A + B -> 3C + D}\], which among the following is NOT the correct rate law expression?
Which of the following unit is used to express the rate of a reaction?
Which of the following statement is not true for a reaction having rate law r = k[H2][I2]?
The correct order of raaii of F, F-, O and O2- is ______.
Write the rate law for the following reaction:
A reaction that is zero order in A and second order in B.
For the reaction A + B → P.
If [B] is doubled at constant [A], the rate of reaction doubled. If [A] is triple and [B] is doubled, the rate of reaction increases by a factor of 6. Calculate the rate law equation.