Advertisements
Advertisements
प्रश्न
Answer the following question.
Define the binding energy of a satellite.
उत्तर
The minimum energy required by a satellite to escape from Earth’s gravitational influence is the binding energy of the satellite.
संबंधित प्रश्न
A nut becomes loose and gets detached from a satellite revolving around the earth. Will it land on the earth? If yes, where will it land? If no, how can an astronaut make it land on the earth?
Consider earth satellites in circular orbits. A geostationary satellite must be at a height of about 36000 km from the earth's surface. Will any satellite moving at this height be a geostationary satellite? Will any satellite moving at this height have a time period of 24 hours?
As the earth rotates about its axis, a person living in his house at the equator goes in a circular orbit of radius equal to the radius of the earth. Why does he/she not feel weightless as a satellite passenger does?
A spacecraft consumes more fuel in going from the earth to the moon than it takes for a return trip. Comment on this statement.
At what rate should the earth rotate so that the apparent g at the equator becomes zero? What will be the length of the day in this situation?
A Mars satellite moving in an orbit of radius 9.4 × 103 km takes 27540 s to complete one revolution. Calculate the mass of Mars.
(a) Find the radius of the circular orbit of a satellite moving with an angular speed equal to the angular speed of earth's rotation. (b) If the satellite is directly above the North Pole at some instant, find the time it takes to come over the equatorial plane. Mass of the earth = 6 × 1024 kg.
Find the minimum colatitude which can directly receive a signal from a geostationary satellite.
Answer the following question.
What do you mean by geostationary satellite?
State the conditions for various possible orbits of satellite depending upon the horizontal/tangential speed of projection.
Answer the following question in detail.
State any four applications of a communication satellite.
Derive an expression for the binding energy of a body at rest on the Earth’s surface of a satellite.
Describe how an artificial satellite using a two-stage rocket is launched in an orbit around the Earth.
Answer the following question in detail.
Two satellites A and B are revolving round a planet. Their periods of revolution are 1 hour and 8 hour respectively. The radius of orbit of satellite B is 4 × 104 km. Find radius of orbit of satellite A.
Solve the following problem.
Calculate the speed of a satellite in an orbit at a height of 1000 km from the Earth’s surface.
(ME = 5.98 × 1024 kg, R = 6.4 × 106 m)
A planet has mass 6.4 × 1024 kg and radius 3.4 × 106 m. Calculate the energy required to remove an object of mass 800 kg from the surface of the planet to infinity.
Solve the following problem.
Calculate the value of the universal gravitational constant from the given data. Mass of the Earth = 6 × 1024 kg, Radius of the Earth = 6400 km, and the acceleration due to gravity on the surface = 9.8 m/s2.
Two satellites A and B go round a planet P in circular orbits having radii 4R and R respectively. If the speed of the satellite A is 3v, the speed of satellite B is ____________.
If the Earth-Sun distance is held constant and the mass of the Sun is doubled, then the period of revolution of the earth around the Sun will change to ____________.
Two satellites of masses m and 4m orbit the earth in circular orbits of radii 8r and r respectively. The ratio of their orbital speeds is ____________.
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
The ratio of energy required to raise a satellite to a height `(2R)/3` above earth's surface to that required to put it into the orbit at the same height is ______.
R = radius of the earth
A satellite of mass 'm', revolving round the earth of radius 'r' has kinetic energy (E). Its angular momentum is ______.
A geostationary satellite is orbiting the earth at a height 6R above the surface of the earth, where R is the radius of the earth. This time period of another satellite at a height (2.5 R) from the surface of the earth is ______.
The period of revolution of a satellite is ______.
Two satellites are orbiting around the earth in circular orbits of same radius. One of them is 10 times greater in mass than the other. Their period of revolutions are in the ratio ______.
Two satellites of same mass are orbiting round the earth at heights of r1 and r2 from the centre of earth. Their potential energies are in the ratio of ______.