हिंदी

Answer the following question: Which element of the first transition series has highest second ionisation enthalpy? - Chemistry

Advertisements
Advertisements

प्रश्न

Answer the following question:

Which element of the first transition series has highest second ionisation enthalpy?

दीर्घउत्तर

उत्तर

Out of all the elements of the first transition series copper has the highest second ionisation enthalpy.

Electronic configuration of Copper is: \[\ce{3d^10 4s^1}\]

After the Loss of first electron from the 4s copper acquires \[\ce{3d^10}\] configuration which is stable. Therefore, removal of second electron from the field 3-D orbital is very difficult and requires high amount of energy.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: The d-and f-Block Elements - Multiple Choice Questions (Type - I) [पृष्ठ ११५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Chemistry [English] Class 12
अध्याय 8 The d-and f-Block Elements
Multiple Choice Questions (Type - I) | Q 68.(i).(a) | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

What are the transition elements? Write two characteristics of the transition elements.


How would you account for the following? 

Zr (Z = 40) and Hf (Z = 72) have almost identical radii.

 


Transition metals with highest melting point is ____________.


Generally transition elements form coloured salts due to the presence of unpaired electrons. Which of the following compounds will be coloured in solid-state?


When \[\ce{KMnO4}\] solution is added to oxalic acid solution, the decolourisation is slow in the beginning but becomes instantaneous after some time because ______.


Why first ionisation enthalpy of Cr is lower than that of Zn?


It has been observed that first ionization energy of 5 d series of transition elements are higher than that of 3d and 4d series, explain why?


Read the passage given below and answer the following question.

Are there nuclear reactions going on in our bodies?

There are nuclear reactions constantly occurring in our bodies, but there are very few of them compared to the chemical reactions, and they do not affect our bodies much. All of the physical processes that take place to keep a human body running are chemical processes. Nuclear reactions can lead to chemical damage, which the body may notice and try to fix. The nuclear reaction occurring in our bodies is radioactive decay. This is the change of a less stable nucleus to a more stable nucleus. Every atom has either a stable nucleus or an unstable nucleus, depending on how big it is and on the ratio of protons to neutrons. The ratio of neutrons to protons in a stable nucleus is thus around 1 : 1 for small nuclei (Z < 20). Nuclei with too many neutrons, too few neutrons, or that are simply too big are unstable. They eventually transform to a stable form through radioactive decay. Wherever there are atoms with unstable nuclei (radioactive atoms), there are nuclear reactions occurring naturally. The interesting thing is that there are small amounts of radioactive atoms everywhere: in your chair, in the ground, in the food you eat, and yes, in your body.

The most common natural radioactive isotopes in humans are carbon-14 and potassium-40. Chemically, these isotopes behave exactly like stable carbon and potassium. For this reason, the body uses carbon-14 and potassium-40 just like it does normal carbon and potassium; building them into the different parts of the cells, without knowing that they are radioactive. In time, carbon-14 atoms decay to stable nitrogen atoms and potassium-40 atoms decay to stable calcium atoms. Chemicals in the body that relied on having a carbon-14 atom or potassium-40 atom in a certain spot will suddenly have a nitrogen or calcium atom. Such a change damages the chemical. Normally, such changes are so rare, that the body can repair the damage or filter away the damaged chemicals.

The natural occurrence of carbon-14 decay in the body is the core principle behind carbon dating. As long as a person is alive and still eating, every carbon-14 atom that decays into a nitrogen atom is replaced on average with a new carbon-14 atom. But once a person dies, he stops replacing the decaying carbon-14 atoms. Slowly the carbon-14 atoms decay to nitrogen without being replaced, so that there is less and less carbon-14 in a dead body. The rate at which carbon-14 decays is constant and follows first order kinetics. It has a half-life of nearly 6000 years, so by measuring the relative amount of carbon-14 in a bone, archeologists can calculate when the person died. All living organisms consume carbon, so carbon dating can be used to date any living organism, and any object made from a living organism. Bones, wood, leather, and even paper can be accurately dated, as long as they first existed within the last 60,000 years. This is all because of the fact that nuclear reactions naturally occur in living organisms.

Why is Carbon-14 radioactive while Carbon-12 not? (Atomic number of Carbon: 6)


The product of oxidation of I with \[\ce{MnO^{-}4}\] in alkaline medium is:-


Which of the following ions has the electronic configuration 3d6?
(Atomic number: Mn = 25, Co = 27, Ni = 28)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×