Advertisements
Advertisements
प्रश्न
बिंदु A(8, 9) और B(1, 2) को जोड़ने वाले रेखाखंड AB को बिंदु P(k, 7) किस अनुपात में विभाजित करता है ज्ञात कीजिए और k का मान बताइए।
उत्तर
A(8, 9); B(1, 2) और P(k, 7).
x1 = 8, y1 = 9, x2 = 1, y2 = 2, x = k तथा y = 7.
मानो कि, बिंदु P यह रेख AB को m : n के अनुपात में विभाजित करता है |
विभाजन सूत्र से,
`y = (my_2 + ny_1)/(m + n)`
7 = `(m(2) + n(9))/(m + n)`
∴ 7 = `(2m + 9n)/(m + n)`
∴ 7(m + n) = 2m + 9n
∴ 7m + 7n = 2m + 9n
∴ 7m - 2m = 9n - 7n
∴ 5m = 2n
∴ `m/n = 2/5`
∴ m : n = 2 : 5
∴ बिंदु P, रेख AB को 2 : 5 के अनुपात में विभाजित करता है |
विभाजन सूत्र से,
x = `(mx_2 + nx_1)/(m + n)`
k = `(2(1) + 5(8))/(2 + 5)`
∴ k = `(2 + 40)/7`
∴ k = `42/7`
∴ k = 6
(1) बिंदु P, रेख AB को 2 : 5 के अनुपात में विभाजित करता है |
(2) k = 6.
APPEARS IN
संबंधित प्रश्न
यदि P-T-Q है, तो बिंदु T(-1, 6), बिंदु P(-3, 10) और बिंदु Q(6, -8) को जोड़ने वाले रेखाखंड को किस अनुपात में विभाजित करता है, ज्ञात कीजिए।
बिंदुओं (−2, 3, 5) और (1, –4, 6) को मिलाने से बने रेखा खंड को अनुपात (i) 2 : 3 में अंतः (ii) 2 : 3 में बाह्यतः विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।
P(4, 2, –6) और Q(10, –16, 6) के मिलाने वाली रेखा खंड PQ को सम त्रि-भाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
यदि A और B क्रमशः (-2, -2) और (2, -4) हो तो बिंदु P के निर्देशांक ज्ञात कीजिए ताकि AP = `3/7` AB हो और P रेखाखंड AB पर स्थित हो।
बिंदु A के निर्देशांक ज्ञात कीजिए, जहाँ AB एक वृत्त का व्यास है जिसका केंद्र (2, -3) है तथा B के निर्देशांक (1, 4) हैं।
वह अनुपात ज्ञात कीजिए जिसमें बिंदुओं A(1, -5) और B(-4, 5) को मिलाने वाला रेखाखंड x-अक्ष से विभाजित होता है। इस विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
बिंदुओं (-3, 10) और (6, -8) को जोड़ने वाले रेखाखंड को बिंदु (-1, 6) किस अनुपात में विभाजित करता है?
उस बिंदु के निर्देशांक ज्ञात कीजिए, जो बिंदुओं (-1, 7) और (4, -3) को मिलाने वाले रेखाखंड को 2 : 3 के अनुपात में विभाजित करता है।
बिंदुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
यदि बिंदु A(4, –3) तथा B(8, 5) हो, तो रेखाखंड AB को 3 : 1 के अनुपात में विभाजित करने वाले बिंदु P का निर्देशांक ज्ञात करने के लिए निम्न कृति पूर्ण करो:
कृति:
x = `(mx_2 + nx_1)/square`
∴ x = `(3 xx 8 + 1 xx 4)/(3 + 1)`
∴ x = `(square + 4)/4`
∴ x = `square`,
y = `square/(m + n)`
∴ y = `(3 xx 5 + 1 xx (-3))/(3 + 1)`
∴ y = `(square - 3)/4`
∴ y = `square`