Advertisements
Advertisements
प्रश्न
उस बिंदु के निर्देशांक ज्ञात कीजिए, जो बिंदुओं (-1, 7) और (4, -3) को मिलाने वाले रेखाखंड को 2 : 3 के अनुपात में विभाजित करता है।
उत्तर
AB के अंतिम बिंदु A (-1, 7) और B (4, -3) हैं
इसलिए, (x1 = -1, y1 = 7) और (x2 = 4, y2 = -3)
साथ ही, m = 2 और n = 3
मान लीजिए कि अपेक्षित बिंदु P (x, y) है
अनुभाग सूत्र द्वारा, हमें प्राप्त होता है
x = `(("m"x_2 + "n"x_1))/(("m"+"n")) , "y" = (("my"_2+"ny"_1))/(("m"+"n"))`
⇒ x = `({ 2 xx 4 +3 xx (-1) })/(2+3) , "y"= ({2 xx (-3) + 3 xx 7})/(2+3)`
⇒ `x = (8-3) /5, "y" = (-6+21)/5`
⇒ `x = 5/5, "y" = 15/5`
इसलिए, x = 1 और y = 3
इसलिए, अपेक्षित बिंदु के निर्देशांक (1, 3) हैं।
APPEARS IN
संबंधित प्रश्न
यदि बिंदु P बिंदुओं A(-1, 7) और B(4,- 3) को जोड़ने वाले रेखाखंड को 2 : 3 अनुपात में विभाजित करता हो तो बिंदु P के निर्देशांक ज्ञात कीजिए।
बिंदु A (2, 7) और B(-4, -8) को जोड़ने वाले रेखाखंड AB के त्रिभाजक बिंदुओं के निर्देशांक ज्ञात कीजिए।
A(20, 10), B(0, 20) को जोड़ने वाले रेखाखंड AB को पांच सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
यदि बिंदु A(4, -3) और B(8, 5) हो तो रेखाखंड AB को 3ः1 के अनुपात में विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।
बिंदुओ (−2, 4, 7) और (3, –5, 8) को मिलाने वाली रेखा खंड, YZ-तल द्वारा जिस अनुपात में विभक्त होता है, उसे ज्ञात कीजिए।
विभाजन सूत्र का प्रयोग करके दिखाइए कि बिंदु
A(2, –3, 4), B(−1, 2, 1) तथा C`(0, 1/3, 2)` संरेख हैं।
वह अनुपात ज्ञात कीजिए जिसमें बिंदुओं A(1, -5) और B(-4, 5) को मिलाने वाला रेखाखंड x-अक्ष से विभाजित होता है। इस विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
बिंदुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
ज्ञात कीजिए कि बिंदु `P(3/4, 5/12)`, बिंदुओं `A(1/2, 3/2)` और B(2, –5) को मिलाने वाले रेखाखंड को किस अनुपात में विभाजित करता हैं।
बिंदुओं P(–1, 3) और Q(2, 5) को मिलाने वाले रेखाखंड पर स्थित बिंदु R के निर्देशांक ज्ञात कीजिए, ताकि PR = `3/5`PQ हो।