हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (हिंदी माध्यम) १० वीं कक्षा

A(20, 10), B(0, 20) को जोड़ने वाले रेखाखंड AB को पांच सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए। - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

प्रश्न

A(20, 10), B(0, 20) को जोड़ने वाले रेखाखंड AB को पांच सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।

योग

उत्तर

A(20, 10) और B(0, 20).

मानो कि, P(x1, y1); Q(x2, y2); R(x3, y3) और S(x4, y4) यह रेख AB को पाँच सर्वांगसम रेखाखंडों में विभाजित करता है |

∴ AP = PQ = QR = RS = SB ............(1)

`"AP"/"BP" = "AP"/("PQ + QR + RS + SB")` ................(P-Q-R, Q-R-S और R-S-B)

∴ `"AP"/"PB" = "AP"/("AP + AP + AP + AP")` ........[(1) से]

∴ `"AP"/"PB" = "AP"/"4AP"`

∴ `"AP"/"PB" = 1/4`

∴ AP : PB = 1 : 4

∴ बिंदु P, रेख AB को 1 : 4 के अनुपात में विभाजित करता है |

विभाजन के सूत्र से,

`x_1 = (1(0) + 4(20))/(1 + 4)`

∴ `x_1 = 80/5`

∴ `x_1 = 16`

∴ `y_1 = (1(20) + 4(10))/(1 + 4)`

∴ `y_1 = 60/5`

∴ `y_1 = 12`

∴ बिंदु P का निर्देशांक (16, 12) है | 

बिंदु P, रेख AQ का मध्यबिंदु है | 

∴ मध्यबिंदु के सूत्र से,

16 = `(20 + x_2)/2`

∴ 32 = 20 + x2

∴ `x_2 = 32 - 20`

∴ `x_2 = 12`

12 = `(10 + y_2)/2`

∴ 24 = 10 + `y_2`

∴ `y_2 = 24 - 10`

∴ `y_2 = 14`

बिंदु Q का निर्देशांक (12, 14) है |

बिंदु R, रेख PB का मध्यबिंदु है |

∴ मध्यबिंदु के सूत्र से,

`x_3 = (16 + 0)/2`

∴ `x_3 = 16/2`

∴ `x_3 = 8`

∴ `y_3 = (12 + 20)/2`

∴ `y_3 = 32/2`

∴ `y_3 = 16`

∴ बिंदु R का निर्देशांक (8, 16) है |

बिंदु S, रेख RB का मध्यबिंदु है |

∴ मध्यबिंदु के सूत्र से,

`x_4 = (8 + 0)/2`

∴ `x_4 = 8/2`

∴ `x_4 = 4`

∴ `y_4 = (16 + 20)/2`

∴ `y_4 = 36/2`

∴ `y_4 = 18`

∴ बिंदु S का निर्देशांक (4, 18) है |

∴ रेखाखंड AB को पाँच सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक (16, 12); (12, 14); (8, 16) और (4, 18) हैं | 

shaalaa.com
विभाजन सूत्र
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: निर्देशांक भूमिति - प्रश्नसंग्रह 5.2 [पृष्ठ ११६]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Hindi] 10 Standard SSC Maharashtra State Board
अध्याय 5 निर्देशांक भूमिति
प्रश्नसंग्रह 5.2 | Q 12. | पृष्ठ ११६

संबंधित प्रश्न

यदि बिंदु P बिंदुओं A(-1, 7) और B(4,- 3) को जोड़ने वाले रेखाखंड को 2 : 3 अनुपात में विभाजित करता हो तो बिंदु P के निर्देशांक ज्ञात कीजिए। 


नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।

P(-2, -5), Q(4, 3), a : b = 3 : 4


बिंदु A (2, 7) और B(-4, -8) को जोड़ने वाले रेखाखंड AB के त्रिभाजक बिंदुओं के निर्देशांक ज्ञात कीजिए। 


A(3, 8) और B(-9, 3) इन बिंदुओं को जोड़ने वाले रेखाखंड को Y- अक्ष किस अनुपात में विभाजित करता है।


बिंदुओं (−2, 3, 5) और (1, –4, 6) को मिलाने से बने रेखा खंड को अनुपात (i) 2 : 3 में अंतः (ii) 2 : 3 में बाह्यतः विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।


दिया गया है कि बिंदु P(3, 2, –4), Q(5, 4, – 6) और R(9, 8, –10) संरेख हैं। वह अनुपात ज्ञात कीजिए जिसमें Q, PR को विभाजित करता है।


एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल = `1/2` (उसके विकर्णों का गुणनफल)]


यदि बिंदु (1, 2), (4, y), (x, 6) और (3, 5), इसी क्रम में लेने पर, एक समांतर चतुर्भुज के शीर्ष हो तो x और y ज्ञात कीजिए।


बिंदुओं (– 4, – 6) और (–1, 7) को मिलाने वाले रेखाखंड को x-अक्ष किस अनुपात में विभाजित करती है? विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।


वह अनुपात ज्ञात कीजिए, जिसमें रेखा 2x + 3y – 5 = 0, बिंदुओं (8, –9) और (2, 1) को मिलाने वाले रेखाखंड को विभाजित करती है। विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×