Advertisements
Advertisements
प्रश्न
A(-14, -10), B(6, -2) को जोड़ने वाले रेखाखंड AB को चार सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
उत्तर
A(-14, -10) और B(6, -2).
मानो कि, बिंदु P, Q तथा R यह रेख AB को चार सर्वांगसम रेखाखंडों में विभाजित करता हैं |
मानो कि, P(x1, y1); Q(x2, y2) और R(x3, y3).
बिंदु Q, रेख AB का मध्यबिंदु है |
∴ मध्यबिंदु के सूत्र से,
`x_2 = (-14 + 6)/6 = (-8)/2 = -4`
`y_2 = (-10 + (-2))/2 = (-10 - 2)/2 = (-12)/2 = -6`
∴ बिंदु Q का निर्देशांक (-4, -6) है |
बिंदु P, रेख AQ का मध्यबिंदु है |
∴ मध्यबिंदु के सूत्र से,
`x_1 = (-14 + (-4))/2 = (-14 - 4)/2 = (-18)/2 = -9`
`y_1 = (-10 + (-6))/2 = (-10 - 6)/2 = (-16)/2 = -8`
∴ बिंदु P का निर्देशांक (-9, -8) है |
बिंदु R, रेख QB का मध्यबिंदु है |
∴ मध्यबिंदु के सूत्र से,
`x_3 = (-4 + 6)/2 = 2/2 = 1`
`y_3 = (-6 + (-2))/2 = (-6 - 2)/2 = (-8)/2 = -4`
∴ बिंदु R का निर्देशांक (1, -4) है |
रेखाखंड AB को चार सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक (-9, -8); (-4, -6) और (1, -4) है |
APPEARS IN
संबंधित प्रश्न
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(-3, 7), Q(1, -4), a : b = 2 : 1
बिंदु A (2, 7) और B(-4, -8) को जोड़ने वाले रेखाखंड AB के त्रिभाजक बिंदुओं के निर्देशांक ज्ञात कीजिए।
A(20, 10), B(0, 20) को जोड़ने वाले रेखाखंड AB को पांच सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
बिंदुओं (−2, 3, 5) और (1, –4, 6) को मिलाने से बने रेखा खंड को अनुपात (i) 2 : 3 में अंतः (ii) 2 : 3 में बाह्यतः विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।
बिंदुओ (−2, 4, 7) और (3, –5, 8) को मिलाने वाली रेखा खंड, YZ-तल द्वारा जिस अनुपात में विभक्त होता है, उसे ज्ञात कीजिए।
यदि बिंदु (1, 2), (4, y), (x, 6) और (3, 5), इसी क्रम में लेने पर, एक समांतर चतुर्भुज के शीर्ष हो तो x और y ज्ञात कीजिए।
वह अनुपात ज्ञात कीजिए जिसमें बिंदुओं A(1, -5) और B(-4, 5) को मिलाने वाला रेखाखंड x-अक्ष से विभाजित होता है। इस विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
बिंदुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
ज्ञात कीजिए कि बिंदु `P(3/4, 5/12)`, बिंदुओं `A(1/2, 3/2)` और B(2, –5) को मिलाने वाले रेखाखंड को किस अनुपात में विभाजित करता हैं।
यदि बिंदु A(4, –3) तथा B(8, 5) हो, तो रेखाखंड AB को 3 : 1 के अनुपात में विभाजित करने वाले बिंदु P का निर्देशांक ज्ञात करने के लिए निम्न कृति पूर्ण करो:
कृति:
x = `(mx_2 + nx_1)/square`
∴ x = `(3 xx 8 + 1 xx 4)/(3 + 1)`
∴ x = `(square + 4)/4`
∴ x = `square`,
y = `square/(m + n)`
∴ y = `(3 xx 5 + 1 xx (-3))/(3 + 1)`
∴ y = `(square - 3)/4`
∴ y = `square`