Advertisements
Advertisements
प्रश्न
ज्ञात कीजिए कि बिंदु `P(3/4, 5/12)`, बिंदुओं `A(1/2, 3/2)` और B(2, –5) को मिलाने वाले रेखाखंड को किस अनुपात में विभाजित करता हैं।
उत्तर
मान लीजिए कि, `"P"(3/4, 5/12)` AB को आंतरिक रूप से m : n के अनुपात में विभाजित करता है।
अनुभाग सूत्र का उपयोग करते हुए, हम प्राप्त करते हैं।
`(3/4, 5/12) = ((2m - n/2)/(m + n), (-5m + 3/2n)/(m + n))` ...`[∵ "आंतरिक अनुभाग सूत्र, बिंदु P के निर्देशांक बिंदु से जुड़ने वाले रेखा खंड को विभाजित करते हैं" (x_1, y_1) "और" (x_2, y_2) "अनुपात में" m_1 : m_2 "आंतरिक रूप से है" ((m_2x_1 + m_1x_2)/(m_1 + m_2), (m_2y_1 + m_1y_2)/(m_1 + m_2))]`
बराबर करने पर, हम प्राप्त होता है।
`3/4 = (2m - n/2)/(m + n)` and `5/12 = (-5m + 3/2n)/(m + n)`
⇒ `3/4 = (4m - n)/(2(m + n))` and `5/12 = (-10m + 3n)/(2(m + n))`
⇒ `3/2 = (4m - n)/(m + n)` and `5/6 = (-10m + 3n)/(m + n)`
⇒ 3m + 3n = 8m – 2n and 5m + 5n = – 60m + 18n
⇒ 5n – 5m = 0 and 65m – 13n = 0
⇒ n = m and 13(5m – n) = 0
⇒ n = m and 5m – n = 0
चूँकि, m = n संतुष्ट नहीं करता है।
∴ 5m – n = 0
⇒ 5m = n
∴ `"m"/"n" = 1/5`
अतः, आवश्यक अनुपात 1 : 5 है।
APPEARS IN
संबंधित प्रश्न
यदि बिंदु P बिंदुओं A(-1, 7) और B(4,- 3) को जोड़ने वाले रेखाखंड को 2 : 3 अनुपात में विभाजित करता हो तो बिंदु P के निर्देशांक ज्ञात कीजिए।
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(-2, -5), Q(4, 3), a : b = 3 : 4
बिंदु A(8, 9) और B(1, 2) को जोड़ने वाले रेखाखंड AB को बिंदु P(k, 7) किस अनुपात में विभाजित करता है ज्ञात कीजिए और k का मान बताइए।
बिंदु A (2, 7) और B(-4, -8) को जोड़ने वाले रेखाखंड AB के त्रिभाजक बिंदुओं के निर्देशांक ज्ञात कीजिए।
A(20, 10), B(0, 20) को जोड़ने वाले रेखाखंड AB को पांच सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
बिंदुओ (−2, 4, 7) और (3, –5, 8) को मिलाने वाली रेखा खंड, YZ-तल द्वारा जिस अनुपात में विभक्त होता है, उसे ज्ञात कीजिए।
एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल = `1/2` (उसके विकर्णों का गुणनफल)]
यदि बिंदु (1, 2), (4, y), (x, 6) और (3, 5), इसी क्रम में लेने पर, एक समांतर चतुर्भुज के शीर्ष हो तो x और y ज्ञात कीजिए।
बिंदुओं A(3, 2) और B(5, 1) को मिलाने वाला रेखाखंड बिंदु P पर 1 : 2 के अनुपात में विभाजित हो जाता है। तथा बिंदु P रेखा 3x – 18y + k = 0 पर स्थित है। k का मान ज्ञात कीजिए।
यदि बिंदुओं A(1, –2), B(2, 3), C(a, 2) और D(– 4, –3) से एक समांतर चतुर्भुज बनता है, तो a का मान ज्ञात कीजिए तथा AB को आधार लेकर उसकी संगत ऊँचाई ज्ञात कीजिए।