Advertisements
Advertisements
Question
उस बिंदु के निर्देशांक ज्ञात कीजिए, जो बिंदुओं (-1, 7) और (4, -3) को मिलाने वाले रेखाखंड को 2 : 3 के अनुपात में विभाजित करता है।
Solution
AB के अंतिम बिंदु A (-1, 7) और B (4, -3) हैं
इसलिए, (x1 = -1, y1 = 7) और (x2 = 4, y2 = -3)
साथ ही, m = 2 और n = 3
मान लीजिए कि अपेक्षित बिंदु P (x, y) है
अनुभाग सूत्र द्वारा, हमें प्राप्त होता है
x = `(("m"x_2 + "n"x_1))/(("m"+"n")) , "y" = (("my"_2+"ny"_1))/(("m"+"n"))`
⇒ x = `({ 2 xx 4 +3 xx (-1) })/(2+3) , "y"= ({2 xx (-3) + 3 xx 7})/(2+3)`
⇒ `x = (8-3) /5, "y" = (-6+21)/5`
⇒ `x = 5/5, "y" = 15/5`
इसलिए, x = 1 और y = 3
इसलिए, अपेक्षित बिंदु के निर्देशांक (1, 3) हैं।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(-3, 7), Q(1, -4), a : b = 2 : 1
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(-2, -5), Q(4, 3), a : b = 3 : 4
दिया गया है कि बिंदु P(3, 2, –4), Q(5, 4, – 6) और R(9, 8, –10) संरेख हैं। वह अनुपात ज्ञात कीजिए जिसमें Q, PR को विभाजित करता है।
बिंदुओ (−2, 4, 7) और (3, –5, 8) को मिलाने वाली रेखा खंड, YZ-तल द्वारा जिस अनुपात में विभक्त होता है, उसे ज्ञात कीजिए।
विभाजन सूत्र का प्रयोग करके दिखाइए कि बिंदु
A(2, –3, 4), B(−1, 2, 1) तथा C`(0, 1/3, 2)` संरेख हैं।
P(4, 2, –6) और Q(10, –16, 6) के मिलाने वाली रेखा खंड PQ को सम त्रि-भाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
बिंदुओं A(-2, 2) और B(2, 8) को जोड़ने वाले रेखाखंड AB को चार बराबर भागों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
यदि A और B क्रमशः (-2, -2) और (2, -4) हो तो बिंदु P के निर्देशांक ज्ञात कीजिए ताकि AP = `3/7` AB हो और P रेखाखंड AB पर स्थित हो।
बिंदुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
वह अनुपात ज्ञात कीजिए, जिसमें रेखा 2x + 3y – 5 = 0, बिंदुओं (8, –9) और (2, 1) को मिलाने वाले रेखाखंड को विभाजित करती है। विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।