English

वह अनुपात ज्ञात कीजिए, जिसमें रेखा 2x + 3y – 5 = 0, बिंदुओं (8, –9) और (2, 1) को मिलाने वाले रेखाखंड को विभाजित करती है। विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

वह अनुपात ज्ञात कीजिए, जिसमें रेखा 2x + 3y – 5 = 0, बिंदुओं (8, –9) और (2, 1) को मिलाने वाले रेखाखंड को विभाजित करती है। विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।

Sum

Solution

मान लीजिए कि रेखा 2x + 3y – 5 = 0 बिंदुओं A(8, –9) और B(2, 1) को मिलाने वाले रेखाखंड को बिंदु P पर 2:1 के अनुपात में विभाजित करती है।

∴ P के निर्देशांक = `{(2λ + 8)/(λ + 1), (λ - 9)/(λ + 1)}`   ...`[∵  "आंतरिक विभाजन"  = {(m_1x_2 + m_2x_1)/(m_1 + m_2), (m_1y_2 + m_2y_1)/(m_1 + m_2)}]`

लेकिन P, 2x + 3y – 5 = 0 पर स्थित है।

∴ `2((2λ + 8)/(λ + 1)) + 3((λ - 9)/(λ + 1)) - 5` = 0

⇒ 2(2λ + 8) + 3(λ – 9) – 5(λ + 1) = 0

⇒ 4λ + 16 + 3λ – 27 – 5λ – 5 = 0

⇒ 2λ – 16 = 0

⇒ λ = 8

⇒ λ : 1 = 8 : 1

तो, बिंदु P रेखा को 8 : 1 के अनुपात में विभाजित करता है।

∴ विभाजन बिंदु P = `{(2(8) + 8)/(8 + 1), (8 - 9)/(8 + 1)}`

= `((16 + 8)/9, - 1/9)`

= `(24/9, (-1)/9)`

= `(8/3, (-1)/9)`

अतः, विभाजन का आवश्यक बिंदु `(8/3, (-1)/9)` है।

shaalaa.com
विभाजन सूत्र
  Is there an error in this question or solution?
Chapter 7: निर्देशांक ज्यामिति - प्रश्नावली 7.3 [Page 86]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 7 निर्देशांक ज्यामिति
प्रश्नावली 7.3 | Q 20. | Page 86

RELATED QUESTIONS

यदि बिंदु A(4, -3) और B(8, 5) हो तो रेखाखंड AB को 3ः1 के अनुपात में विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।


दिया गया है कि बिंदु P(3, 2, –4), Q(5, 4, – 6) और R(9, 8, –10) संरेख हैं। वह अनुपात ज्ञात कीजिए जिसमें Q, PR को विभाजित करता है।


विभाजन सूत्र का प्रयोग करके दिखाइए कि बिंदु
A(2, –3, 4), B(−1, 2, 1) तथा C`(0, 1/3, 2)` संरेख हैं।


एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल = `1/2` (उसके विकर्णों का गुणनफल)]


यदि A और B क्रमशः (-2, -2) और (2, -4) हो तो बिंदु P के निर्देशांक ज्ञात कीजिए ताकि AP = `3/7` AB हो और P रेखाखंड AB पर स्थित हो।


यदि बिंदु (1, 2), (4, y), (x, 6) और (3, 5), इसी क्रम में लेने पर, एक समांतर चतुर्भुज के शीर्ष हो तो x और y ज्ञात कीजिए।


वह अनुपात ज्ञात कीजिए जिसमें बिंदुओं A(1, -5) और B(-4, 5) को मिलाने वाला रेखाखंड x-अक्ष से विभाजित होता है। इस विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।


बिंदुओं A(2, -2) और B(3, 7) को जोड़ने वाले रेखाखंड को रेखा 2x + y - 4 = 0 जिस अनुपात में विभाजित करती है उसे ज्ञात कीजिए।


बिंदुओं P(–1, 3) और Q(2, 5) को मिलाने वाले रेखाखंड पर स्थित बिंदु R के निर्देशांक ज्ञात कीजिए, ताकि PR = `3/5`PQ हो।


यदि बिंदुओं A(1, –2), B(2, 3), C(a, 2) और D(– 4, –3) से एक समांतर चतुर्भुज बनता है, तो a का मान ज्ञात कीजिए तथा AB को आधार लेकर उसकी संगत ऊँचाई ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×