Advertisements
Advertisements
Question
बिंदुओं A(2, -2) और B(3, 7) को जोड़ने वाले रेखाखंड को रेखा 2x + y - 4 = 0 जिस अनुपात में विभाजित करती है उसे ज्ञात कीजिए।
Solution
मान लीजिए कि दिए हुए रेखाखण्ड और दी गई रेखा बिन्दु P (x, y) पर परस्पर प्रतिच्छेद करती है तो ∆PAB का क्षेत्रफल शून्य होगा क्योंकि ये सरेख हैं।
⇒ `1/2` [x (-2 - 7) + 2 (7 - y) + 3 (y + 2)] = 0
⇒ -9x + 14 - 2y + 3y + 6 = 0
⇒ 9x - y - 20 = 0 …(1)
⇒ 2x + y - 4 = 0 (दिया है) …(2)
⇒ 11x = 24
⇒ x = `24/11`
मान लीजिए बिन्दु P(x, y), A(2, -2) और B(3, 7) से बने रेखाखण्ड AB को m1 एवं m2 के अनुपात में विभाजित करता है।
⇒ `"x" = ("m"_1"x"_2 + "m"_2"x"_1)/("m"_1 + "m"_1)`
⇒ `("m"_1(3) + "m"_2(2))/("m"_1 + "m"_2) = 24/11`
⇒ `(3"m"_1 + 2"m"_2)/("m"_1 + "m"_2) = 24/11`
⇒ 33m1 + 22m2 = 24m1 + 24m2
⇒ 33m1 - 24m1 = 24m2 - 22m2
⇒ 9m1 = 2m2
⇒ `"m"_1/"m"_2 = 29`
⇒ m1 : m2 = 2 : 9
अतः अभीष्ट अनुपात 2 : 9 है।
APPEARS IN
RELATED QUESTIONS
यदि बिंदु P बिंदुओं A(-1, 7) और B(4,- 3) को जोड़ने वाले रेखाखंड को 2 : 3 अनुपात में विभाजित करता हो तो बिंदु P के निर्देशांक ज्ञात कीजिए।
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(2, 6), Q(-4, 1), a : b = 1 : 2
A(-14, -10), B(6, -2) को जोड़ने वाले रेखाखंड AB को चार सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
बिंदुओं (−2, 3, 5) और (1, –4, 6) को मिलाने से बने रेखा खंड को अनुपात (i) 2 : 3 में अंतः (ii) 2 : 3 में बाह्यतः विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।
दिया गया है कि बिंदु P(3, 2, –4), Q(5, 4, – 6) और R(9, 8, –10) संरेख हैं। वह अनुपात ज्ञात कीजिए जिसमें Q, PR को विभाजित करता है।
एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल = `1/2` (उसके विकर्णों का गुणनफल)]
बिंदुओं A(-2, 2) और B(2, 8) को जोड़ने वाले रेखाखंड AB को चार बराबर भागों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
बिंदुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
वह अनुपात ज्ञात कीजिए, जिसमें रेखा 2x + 3y – 5 = 0, बिंदुओं (8, –9) और (2, 1) को मिलाने वाले रेखाखंड को विभाजित करती है। विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
यदि बिंदुओं A(1, –2), B(2, 3), C(a, 2) और D(– 4, –3) से एक समांतर चतुर्भुज बनता है, तो a का मान ज्ञात कीजिए तथा AB को आधार लेकर उसकी संगत ऊँचाई ज्ञात कीजिए।