Advertisements
Advertisements
Question
एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल = `1/2` (उसके विकर्णों का गुणनफल)]
Solution 1
मान लीजिए (3, 0), (4, 5), (−1, 4) और (−2, −1) एक समचतुर्भुज ABCD के शीर्ष A, B, C, D हैं।
विकर्ण AC की लंबाई = `sqrt([3-(-1)]^2 + (0-4)^2)`
= `sqrt((-4)^2 + (4)^2)`
= `sqrt (16 + 16)`
= `4sqrt2`
विकर्ण BD की लंबाई = `sqrt([4-(-2)]^2+[5-(-1)]^2)`
= `sqrt((-6)^2 + (-6)^2)`
= `sqrt(36+36) `
= `6sqrt2`
इसलिए, समचतुर्भुज ABCD का क्षेत्रफल = `1/2xx("विकर्णों का गुणनफल")`
= `1/2xx"AC"xx"BD"`
= `1/2xx4sqrt2xx6sqrt2`
= `1/2xx2xx4xx6`
= 24 वर्ग इकाइयाँ
Solution 2
मान लीजिए समचतुर्भुज के शीर्ष क्रमशः A(3, 0), B(4, 5), C (-1, 4) और D(-2, -1) दिए हुए हैं।
⇒ AC = `sqrt((-1 - 3)^2 + (4 - 0)^2)`
= `sqrt((-4)^2 + (4)^2)`
= `sqrt(16 + 16) `
= `4sqrt2` मात्रक
एवं BD = `sqrt((-2 - 4)^2 + (-1 - 5)^2)`
= `sqrt((-6)^2 + (-6)^2)`
= `sqrt(36 + 36)`
= `6sqrt2` मात्रक
चूँकि समचतुर्भुज ABCD का क्षेत्रफल = `1/2 xx "AC" xx "BD"`
ar (ABCD) = `1/2 xx 4sqrt2 xx 6sqrt2`
= 4 × 6
= 24
वर्ग मात्रक अतः दिए समचतुर्भुज का अभीष्ट क्षेत्रफल = 24 वर्ग मात्रक है।
APPEARS IN
RELATED QUESTIONS
यदि बिंदु P बिंदुओं A(-1, 7) और B(4,- 3) को जोड़ने वाले रेखाखंड को 2 : 3 अनुपात में विभाजित करता हो तो बिंदु P के निर्देशांक ज्ञात कीजिए।
नीचे दिए गए उदाहरण में रेखाखंड PQ को a : b के अनुपात में विभाजित करने वाले बिंदु A के निर्देशांक ज्ञात कीजिए।
P(-3, 7), Q(1, -4), a : b = 2 : 1
बिंदु A (2, 7) और B(-4, -8) को जोड़ने वाले रेखाखंड AB के त्रिभाजक बिंदुओं के निर्देशांक ज्ञात कीजिए।
A(-14, -10), B(6, -2) को जोड़ने वाले रेखाखंड AB को चार सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
A(20, 10), B(0, 20) को जोड़ने वाले रेखाखंड AB को पांच सर्वांगसम रेखाखंडों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
बिंदुओं A(-2, 2) और B(2, 8) को जोड़ने वाले रेखाखंड AB को चार बराबर भागों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
यदि A और B क्रमशः (-2, -2) और (2, -4) हो तो बिंदु P के निर्देशांक ज्ञात कीजिए ताकि AP = `3/7` AB हो और P रेखाखंड AB पर स्थित हो।
बिंदु A के निर्देशांक ज्ञात कीजिए, जहाँ AB एक वृत्त का व्यास है जिसका केंद्र (2, -3) है तथा B के निर्देशांक (1, 4) हैं।
बिंदुओं A(2, -2) और B(3, 7) को जोड़ने वाले रेखाखंड को रेखा 2x + y - 4 = 0 जिस अनुपात में विभाजित करती है उसे ज्ञात कीजिए।
बिंदुओं P(–1, 3) और Q(2, 5) को मिलाने वाले रेखाखंड पर स्थित बिंदु R के निर्देशांक ज्ञात कीजिए, ताकि PR = `3/5`PQ हो।