हिंदी

बिंदुओं P(i^+2j^-k^) और Q(-i^+j^+k^) को मिलाने वाली रेखा को 2:1 के अनुपात में अंतः विभाजित करने वाले बिंदु R का स्थिति सदिश ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिंदुओं `P(hati + 2hatj - hatk)` और `Q(-hati + hatj + hatk)` को मिलाने वाली रेखा को 2:1 के अनुपात में अंतः विभाजित करने वाले बिंदु R का स्थिति सदिश ज्ञात कीजिए।

योग

उत्तर

यहाँ, `veca = hati + 2hatj - hatk` and `vecb = hat-i + hatj + hatk`

P और Q के जोड़ को 2:1 के अनुपात में आंतरिक रूप से विभाजित करने वाला R का स्थिति सदिश है,

`vecR = (mvecb + nveca)/(m + n)`

`= (2 (vecb) + 1 (veca))/(2 + 1)`

`= (2 (- hati + hatj + hatk) + 1(hati + 2hatj - hatk))/ (2 + 1)`

`= (-1)/3 hati + 4/3 hatj + 1/3hatk.`

shaalaa.com
एक अदिश से सदिश का गुणन - खंड सूत्र
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?

संबंधित प्रश्न

बिंदुओं `P(hati + 2hatj - hatk)` और `Q(-hati + hatj + hatk)` को मिलाने वाली रेखा को 2:1 के अनुपात में बाह्य, विभाजित करने वाले बिंदु R का स्थिति सदिश ज्ञात कीजिए।


दो बिंदुओं P(2, 3, 4) और Q(4, 1, -2) को मिलाने वाले सदिश का मध्य बिंदु ज्ञात कीजिए। 


दर्शाइए कि सदिश `2hati - hatj + hatk, hati - 3hatj - 5hatk` और `3hati - 4hatj - 4hatk` एक समकोण त्रिभुज के शीर्षों की रचना करते हैं।


दर्शाइए कि बिंदु A(1, -2, -8), B(5, 0, -2) और C(11, 3, 7) संरेख है और B द्वारा AC को विभाजित करने वाला अनुपात ज्ञात कीजिए।


दो बिंदुओं `P(2veca + vecb)` और `Q(veca - 3vecb)` को मिलाने वाली रेखा को 1 : 2 के अनुपात मे बाह्य विभाजित करने वाले बिंदु R का स्थिति सदिश ज्ञात कीजिए। यह भी दर्शाइए कि बिंदु P रेखाखंड RQ का मध्य बिंदु है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×