Advertisements
Advertisements
प्रश्न
Calculate the kinetic energy, potential energy, total energy and binding energy of an artificial satellite of mass 2000 kg orbiting at a height of 3600 km above the surface of the Earth.
Given: G = 6.67 × 10-11 Nm2/kg2
R = 6400 km, M = 6 × 1024 kg
उत्तर
Given: m = 2000 kg, h = 3600 km = 3.6 × 106 m,
G = 6.67 × 10-11 Nm2/kg2,
R = 6400 km = 6.4 × 106 m,
M = 6 × 1024 kg
To find:
1. Kinetic energy (K.E.)
2. Potential energy (P.E.)
3. Total energy (T.E.)
4. Binding energy (B.E.)
Formulae:
1. K.E. = `"GMm"/(2("R + h"))`
2. P.E. = `- "GMm"/("R + h")` = - 2(K.E.)
3. T.E. = K.E. + P.E.
4. B.E. = –T.E.
Calculation:
From formula (i),
K.E. = `(6.67 xx 10^-11 xx 6 xx 10^24 xx 2 xx 10^3)/(2 xx [(6.4 xx 10^6) + (3.6 xx 10^6)])`
`= (6.67 xx 6 xx 10^16)/10^7`
= 40.02 × 109 J
From formula (ii),
P.E. = –2 × 40.02 × 109 = - 80.04 × 109 J
From formula (iii),
T.E. = (40.02 × 109) + (–80.04 × 109) = - 40.04 × 109 J
From formula (iv),
B.E. = – (–40.02 × 109) = 40.02 × 109 J
Kinetic energy of the satellite is 40.02 × 109 J potential energy is –80.04 × 109 J, total energy is -40.02 × 109 J and binding energy is 40.02 × 109 J.
APPEARS IN
संबंधित प्रश्न
No part of India is situated on the equator. Is it possible to have a geostationary satellite which always remains over New Delhi?
The time period of an earth-satellite in circular orbit is independent of
A pendulum having a bob of mass m is hanging in a ship sailing along the equator from east to west. When the ship is stationary with respect to water the tension in the string is T0. (a) Find the speed of the ship due to rotation of the earth about its axis. (b) Find the difference between T0 and the earth's attraction on the bob. (c) If the ship sails at speed v, what is the tension in the string? Angular speed of earth's rotation is ω and radius of the earth is R.
(a) Find the radius of the circular orbit of a satellite moving with an angular speed equal to the angular speed of earth's rotation. (b) If the satellite is directly above the North Pole at some instant, find the time it takes to come over the equatorial plane. Mass of the earth = 6 × 1024 kg.
The radius of a planet is R1 and a satellite revolves round it in a circle of radius R2. The time period of revolution is T. Find the acceleration due to the gravitation of the planet at its surface.
Choose the correct option.
The binding energy of a satellite revolving around the planet in a circular orbit is 3 × 109 J. It's kinetic energy is ______.
Answer the following question.
What is periodic time of a geostationary satellite?
Draw a labelled diagram to show different trajectories of a satellite depending upon the tangential projection speed.
Answer the following question in detail.
What is a critical velocity?
Answer the following question in detail.
Obtain an expression for the critical velocity of an orbiting satellite. On what factors does it depend?
Solve the following problem.
Calculate the speed of a satellite in an orbit at a height of 1000 km from the Earth’s surface.
(ME = 5.98 × 1024 kg, R = 6.4 × 106 m)
Solve the following problem.
Calculate the value of acceleration due to gravity on the surface of Mars if the radius of Mars = 3.4 × 103 km and its mass is 6.4 × 1023 kg.
A planet has mass 6.4 × 1024 kg and radius 3.4 × 106 m. Calculate the energy required to remove an object of mass 800 kg from the surface of the planet to infinity.
A body weighs 5.6 kg wt on the surface of the Earth. How much will be its weight on a planet whose mass is 7 times the mass of the Earth and radius twice that of the Earth’s radius?
There is no atmosphere on moon because ____________.
What is the minimum energy required to launch a satellite of mass 'm' from the surface of the earth of mass 'M' and radius 'R' at an altitude 2R?
An aircraft is moving with uniform velocity 150 m/s in the space. If all the forces acting on it are balanced, then it will ______.
Two satellites A and B go round a planet P in circular orbits having radii 4R and R respectively. If the speed of the satellite A is 3v, the speed of satellite B is ____________.
Reason of weightlessness in a satellite is ____________.
Assuming that the earth is revolving around the sun in circular orbit of radius 'R', the angular momentum is directly proportional to rn. The value of 'n' is ______.
Out of following, the only correct statement about satellites is ____________.
A satellite of mass 'm' is revolving around the earth of mass 'M' in an orbit of radius 'r' with constant angular velocity 'ω'. The angular momentum of the satellite is ______.
(G =gravitational constant)
Show the nature of the following graph for a satellite orbiting the earth.
- KE vs orbital radius R
- PE vs orbital radius R
- TE vs orbital radius R.
A satellite revolves around a planet very close to its surface. By what maximum factor can its kinetic energy be increased suddenly, such that it revolves in orbit in the same way?
A satellite is revolving around a planet in a circular orbit close to its surface and ρ is the mean density and R is the radius of the planet, then the period of ______.
(G = universal constant of gravitation)
Two satellites of same mass are orbiting round the earth at heights of r1 and r2 from the centre of earth. Their potential energies are in the ratio of ______.