हिंदी

Calculate the Mean of the Following Frequency Distribution : - Mathematics

Advertisements
Advertisements

प्रश्न

Calculate the mean of the following frequency distribution :

Class: 10-30 30-50 50-70 70-90 90-110 110-130
Frequency: 5 8 12 20 3 2
योग

उत्तर

Class frequency (fi) Class mark(xi) fixi
10-30 5 `(10+30)/2 = 20` 100
30-50 8 `(30+50)/2 = 40` 320
50-70 12 `(50+70)/2 = 60` 720
70-90 20 `(70+90)/2 = 80` 1600
90-110 3 `(90+110)/2 = 100` 300
110-130 2 `(110+130)/2 = 120` 240
  `sumf_i = 50`   `sumf_ix_i = 3280`

Using: Mean = `(sumf_ix_i)/(sumf_i)`

substituting the values in the formula

mean = `3280/50 = 65.6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) Abroad Set(2)

संबंधित प्रश्न

The following distribution gives the daily income of 50 workers of a factory.

Daily income (in Rs 100 − 120 120 − 140 140 − 160 160 − 180 180 − 200
Number of workers 12 14 8 6 10

Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.


The heights of 50 girls of Class X of a school are recorded as follows:

Height (in cm) 135 - 140 140 – 145 145 – 150 150 – 155 155 – 160 160 – 165
No of Students 5 8 9 12 14 2

Draw a ‘more than type’ ogive for the above data.


From the following data, draw the two types of cumulative frequency curves and determine the median:

Marks Frequency
140 – 144 3
144 – 148 9
148 – 152 24
152 – 156 31
156 – 160 42
160 – 164 64
164 – 168 75
168 – 172 82
172 – 176 86
176 – 180 34

 

 


The median of the distribution given below is 14.4 . Find the values of x and y , if the total frequency is 20.

Class interval : 0-6 6-12 12-18 18-24  24-30
Frequency : 4 5 y 1

Write the modal class for the following frequency distribution:

Class-interval: 10−15 15−20 20−25 25−30 30−35 35−40
Frequency: 30 35 75 40 30 15

 


For a frequency distribution, mean, median and mode are connected by the relation


If \[u_i = \frac{x_i - 25}{10}, \Sigma f_i u_i = 20, \Sigma f_i = 100, \text { then }\]`overlineX`


The marks obtained by 100 students of a class in an examination are given below.

Mark No. of Student
0 - 5 2
5 - 10 5
10 - 15 6
15 - 20 8
20 - 25 10
25 - 30 25
30 - 35 20
35 - 40 18
40 - 45 4
45 - 50 2

Draw 'a less than' type cumulative frequency curves (ogive). Hence find the median.


Form the frequency distribution table from the following data:

Marks (out of 90) Number of candidates
More than or equal to 80 4
More than or equal to 70 6
More than or equal to 60 11
More than or equal to 50 17
More than or equal to 40 23
More than or equal to 30 27
More than or equal to 20 30
More than or equal to 10 32
More than or equal to 0 34

The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:

Age (in years) 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 60 – 70
Number of patients 60 42 55 70 53 20

Form: Less than type cumulative frequency distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×