Advertisements
Advertisements
प्रश्न
The median of the distribution given below is 14.4 . Find the values of x and y , if the total frequency is 20.
Class interval : | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 |
Frequency : | 4 | x | 5 | y | 1 |
उत्तर
The given series is in inclusive form. Converting it to exclusive form and preparing the cumulative frequency table, we have
Class interval | Frequency (fi) | Cumulative Frequency (c.f.) |
0–6 | 4 | 4 |
6–12 | x | 4 + x |
12–18 | 5 | 9 + x |
18–24 | y | 9 + x + y |
24–30 | 1 | 10 + x + y |
10 + x + y = 20 |
Median = 14.4
It lies in the interval 12–18, so the median class is 12–18.
Now, we have
\[l = 12, h = 6, f = 5, F = 4 + x, N = 20\]
We know that
Median `= l + {(N/2 - F)/f} xx h `
\[14 . 4 = 12 + \frac{6 \times \left( 10 - 4 - x \right)}{5}\]
\[ \Rightarrow 12 = 36 - 6x\]
\[ \Rightarrow 6x = 24\]
\[ \Rightarrow x = 4\]
Now,
10 + x + y = 20
\[\Rightarrow x + y = 10\]
\[ \Rightarrow y = 10 - 4 = 6\]
APPEARS IN
संबंधित प्रश्न
The following table gives production yield per hectare of wheat of 100 farms of a village.
Production yield (in kg/ha) | 50 − 55 | 55 − 60 | 60 − 65 | 65 − 70 | 70 − 75 | 75 − 80 |
Number of farms | 2 | 8 | 12 | 24 | 38 | 16 |
Change the distribution to a more than type distribution and draw ogive.
The given distribution shows the number of wickets taken by the bowlers in one-day international cricket matches:
Number of Wickets | Less than 15 | Less than 30 | Less than 45 | Less than 60 | Less than 75 | Less than 90 | Less than 105 | Less than 120 |
Number of bowlers | 2 | 5 | 9 | 17 | 39 | 54 | 70 | 80 |
Draw a ‘less than type’ ogive from the above data. Find the median.
Write the median class of the following distribution:
Class | 0 – 10 | 10 -20 | 20- 30 | 30- 40 | 40-50 | 50- 60 | 60- 70 |
Frequency | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
Write the median class for the following frequency distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 |
Frequency: | 5 | 8 | 7 | 12 | 28 | 20 | 10 | 10 |
If \[u_i = \frac{x_i - 25}{10}, \Sigma f_i u_i = 20, \Sigma f_i = 100, \text { then }\]`overlineX`
In the formula `barx=a+h((sumf_iu_i)/(sumf_i))`, for finding the mean of grouped frequency distribution ui = ______.
Consider the following frequency distribution :
Class: | 0-5 | 6-11 | 12-17 | 18-23 | 24-29 |
Frequency: | 13 | 10 | 15 | 8 | 11 |
The upper limit of the median class is
The arithmetic mean of the following frequency distribution is 53. Find the value of k.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
Frequency | 12 | 15 | 32 | k | 13 |
For one term, absentee record of students is given below. If mean is 15.5, then the missing frequencies x and y are.
Number of days | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 | TOTAL |
Total Number of students | 15 | 16 | x | 8 | y | 8 | 6 | 4 | 70 |
Consider the following distribution:
Marks obtained | Number of students |
More than or equal to 0 | 63 |
More than or equal to 10 | 58 |
More than or equal to 20 | 55 |
More than or equal to 30 | 51 |
More than or equal to 40 | 48 |
More than or equal to 50 | 42 |
The frequency of the class 30 – 40 is: