हिंदी

The Given Distribution Shows the Number of Wickets Taken by the Bowlers in One-day International Cricket Matches:Draw a ‘Less than Type’ Ogive from the Above Data. Find the Median. - Mathematics

Advertisements
Advertisements

प्रश्न

The given distribution shows the number of wickets taken by the bowlers in one-day international cricket matches:

Number of Wickets Less than 15 Less than 30 Less than 45 Less than 60 Less than 75 Less than 90 Less than 105 Less than 120
Number of bowlers 2 5 9 17 39 54 70 80

Draw a ‘less than type’ ogive from the above data. Find the median.

उत्तर

Taking upper class limits of class intervals on x-axis and their respective frequencies on y-axis, its ogive can be drawn as follows:

Here, N = 80 ⇒` N/2` = 40.
Mark the point A whose ordinate is 40 and
its x-coordinate is 76.

Thus, median of the data is 76.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive - Exercises 5

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 9 Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive
Exercises 5 | Q 31

संबंधित प्रश्न

The following distribution gives the daily income of 50 workers of a factory.

Daily income (in Rs 100 − 120 120 − 140 140 − 160 160 − 180 180 − 200
Number of workers 12 14 8 6 10

Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.


Find the median of the following data by making a ‘less than ogive’.

Marks 0 - 10 10-20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80-90 90-100
Number of Students 5 3 4 3 3 4 7 9 7 8

 


From the following frequency, prepare the ‘more than’ ogive.

Score Number of candidates
400 – 450 20
450 – 500 35
500 – 550 40
550 – 600 32
600 – 650 24
650 – 700 27
700 – 750 18
750 – 800 34
Total 230

Also, find the median.


Write the median class for the following frequency distribution:

Class-interval: 0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80
Frequency: 5 8 7 12 28 20 10 10

For a frequency distribution, mean, median and mode are connected by the relation


The median of a given frequency distribution is found graphically with the help of


If \[u_i = \frac{x_i - 25}{10}, \Sigma f_i u_i = 20, \Sigma f_i = 100, \text { then }\]`overlineX`


If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.

Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Total
Frequency f1 5 9 12 f2 3 2 40

Consider the following distribution:

Marks obtained Number of students
More than or equal to 0 63
More than or equal to 10 58
More than or equal to 20 55
More than or equal to 30 51
More than or equal to 40 48
More than or equal to 50 42

The frequency of the class 30 – 40 is:


Look at the following table below.

Class interval Classmark
0 - 5 A
5 - 10 B
10 - 15 12.5
15 - 20 17.5

The value of A and B respectively are?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×