मराठी

The Given Distribution Shows the Number of Wickets Taken by the Bowlers in One-day International Cricket Matches:Draw a ‘Less than Type’ Ogive from the Above Data. Find the Median. - Mathematics

Advertisements
Advertisements

प्रश्न

The given distribution shows the number of wickets taken by the bowlers in one-day international cricket matches:

Number of Wickets Less than 15 Less than 30 Less than 45 Less than 60 Less than 75 Less than 90 Less than 105 Less than 120
Number of bowlers 2 5 9 17 39 54 70 80

Draw a ‘less than type’ ogive from the above data. Find the median.

उत्तर

Taking upper class limits of class intervals on x-axis and their respective frequencies on y-axis, its ogive can be drawn as follows:

Here, N = 80 ⇒` N/2` = 40.
Mark the point A whose ordinate is 40 and
its x-coordinate is 76.

Thus, median of the data is 76.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive - Exercises 5

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 9 Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive
Exercises 5 | Q 31

संबंधित प्रश्‍न

The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha) 50 − 55 55 − 60 60 − 65 65 − 70 70 − 75 75 − 80
Number of farms 2 8 12 24 38 16

Change the distribution to a more than type distribution and draw ogive.


From the following data, draw the two types of cumulative frequency curves and determine the median:

Marks Frequency
140 – 144 3
144 – 148 9
148 – 152 24
152 – 156 31
156 – 160 42
160 – 164 64
164 – 168 75
168 – 172 82
172 – 176 86
176 – 180 34

 

 


What is the lower limit of the modal class of the following frequency distribution?

Age (in years) 0 - 10 10- 20 20 -30 30 – 40 40 –50 50 – 60
Number of patients 16 13 6 11 27 18

The following frequency distribution gives the monthly consumption of electricity of 64 consumers of locality.

Monthly consumption (in units) 65 – 85 85 – 105 105 – 125 125 – 145 145 – 165 165 – 185
Number of consumers 4 5 13 20 14 8

Form a ‘ more than type’ cumulative frequency distribution.


If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.

Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Total
Frequency f1 5 9 12 f2 3 2 40

The marks obtained by 100 students of a class in an examination are given below.

Mark No. of Student
0 - 5 2
5 - 10 5
10 - 15 6
15 - 20 8
20 - 25 10
25 - 30 25
30 - 35 20
35 - 40 18
40 - 45 4
45 - 50 2

Draw 'a less than' type cumulative frequency curves (ogive). Hence find the median.


Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.

Class interval: 20−30 30−40 40−50 50−60 60−70 70−80 80−90
Frequency: 10 8 12 24 6 25 15

Find the unknown entries a, b, c, d, e, f in the following distribution of heights of students in a class:

Height
(in cm)
Frequency Cumulative frequency
150 – 155 12 a
155 – 160 b 25
160 – 165 10 c
165 – 170 d 43
170 – 175 e 48
175 – 180 2 f
Total 50  

The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:

Age (in years) 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 60 – 70
Number of patients 60 42 55 70 53 20

Form: Less than type cumulative frequency distribution.


The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:

Age (in years) 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 60 – 70
Number of patients 60 42 55 70 53 20

Form: More than type cumulative frequency distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×