English

The Given Distribution Shows the Number of Wickets Taken by the Bowlers in One-day International Cricket Matches:Draw a ‘Less than Type’ Ogive from the Above Data. Find the Median. - Mathematics

Advertisements
Advertisements

Question

The given distribution shows the number of wickets taken by the bowlers in one-day international cricket matches:

Number of Wickets Less than 15 Less than 30 Less than 45 Less than 60 Less than 75 Less than 90 Less than 105 Less than 120
Number of bowlers 2 5 9 17 39 54 70 80

Draw a ‘less than type’ ogive from the above data. Find the median.

Solution

Taking upper class limits of class intervals on x-axis and their respective frequencies on y-axis, its ogive can be drawn as follows:

Here, N = 80 ⇒` N/2` = 40.
Mark the point A whose ordinate is 40 and
its x-coordinate is 76.

Thus, median of the data is 76.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive - Exercises 5

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 9 Mean, Median, Mode of Grouped Data, Cumulative Frequency Graph and Ogive
Exercises 5 | Q 31

RELATED QUESTIONS

The monthly profits (in Rs.) of 100 shops are distributed as follows:

Profits per shop: 0 - 50 50 - 100 100 - 150 150 - 200 200 - 250 250 - 300
No. of shops: 12 18 27 20 17 6

Draw the frequency polygon for it.


The heights of 50 girls of Class X of a school are recorded as follows:

Height (in cm) 135 - 140 140 – 145 145 – 150 150 – 155 155 – 160 160 – 165
No of Students 5 8 9 12 14 2

Draw a ‘more than type’ ogive for the above data.


From the following data, draw the two types of cumulative frequency curves and determine the median:

Marks Frequency
140 – 144 3
144 – 148 9
148 – 152 24
152 – 156 31
156 – 160 42
160 – 164 64
164 – 168 75
168 – 172 82
172 – 176 86
176 – 180 34

 

 


The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:

Age (in years) 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 60 -70
Number of patients 6 42 55 70 53 20

Form a ‘less than type’ cumulative frequency distribution.


The following table, construct the frequency distribution of the percentage of marks obtained by 2300 students in a competitive examination.

Marks obtained (in percent) 11 – 20 21 – 30 31 – 40 41 – 50 51 – 60 61 – 70 71 – 80
Number of Students 141 221 439 529 495 322  153

(a) Convert the given frequency distribution into the continuous form.
(b) Find the median class and write its class mark.
(c) Find the modal class and write its cumulative frequency.


The median of the distribution given below is 14.4 . Find the values of x and y , if the total frequency is 20.

Class interval : 0-6 6-12 12-18 18-24  24-30
Frequency : 4 5 y 1

Write the median class for the following frequency distribution:

Class-interval: 0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80
Frequency: 5 8 7 12 28 20 10 10

If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.

Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Total
Frequency f1 5 9 12 f2 3 2 40

Calculate the mean of the following frequency distribution :

Class: 10-30 30-50 50-70 70-90 90-110 110-130
Frequency: 5 8 12 20 3 2

The following is the distribution of weights (in kg) of 40 persons:

Weight (in kg) 40 – 45 45 – 50 50 – 55 55 – 60 60 – 65 65 – 70 70 – 75 75 – 80
Number of persons 4 4 13 5 6 5 2 1

Construct a cumulative frequency distribution (of the less than type) table for the data above.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×