हिंदी

Consider the Following Frequency Distribution : the Upper Limit of the Median Class is - Mathematics

Advertisements
Advertisements

प्रश्न

Consider the following frequency distribution :

Class: 0-5      6-11   12-17  18-23   24-29
Frequency:   13 10 15 8 11

The upper limit of the median class is 

विकल्प

  • 17

  •   17.5   

  • 18

  • 18.5

MCQ

उत्तर

The given classes in the table are non-continuous. So, we first make the classes continuous by adding 0.5 to the upper limit and subtracting 0.5 from the lower limit in each class. 

Class Frequency Cumulative
Frequency
0.5–5.5 13 13
5.5–11.5 10 23
11.5–17.5 15 38
17.5–23.5 8 46
23.5–29.5 11 57

Now, from the table we see that N = 57.
So, 

\[\frac{N}{2} = \frac{57}{2} = 28 . 5\]

28.5 lies in the class 11.5–17.5.
The upper limit of the interval 11.5–17.5 is 17.5. 
Hence, the correct answer is option (b).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Statistics - Exercise 15.8 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 15 Statistics
Exercise 15.8 | Q 43 | पृष्ठ ६९

संबंधित प्रश्न

From the following frequency, prepare the ‘more than’ ogive.

Score Number of candidates
400 – 450 20
450 – 500 35
500 – 550 40
550 – 600 32
600 – 650 24
650 – 700 27
700 – 750 18
750 – 800 34
Total 230

Also, find the median.


The median of the distribution given below is 14.4 . Find the values of x and y , if the total frequency is 20.

Class interval : 0-6 6-12 12-18 18-24  24-30
Frequency : 4 5 y 1

Write the modal class for the following frequency distribution:

Class-interval: 10−15 15−20 20−25 25−30 30−35 35−40
Frequency: 30 35 75 40 30 15

 


For a frequency distribution, mean, median and mode are connected by the relation


The median of a given frequency distribution is found graphically with the help of


The marks obtained by 100 students of a class in an examination are given below.

Mark No. of Student
0 - 5 2
5 - 10 5
10 - 15 6
15 - 20 8
20 - 25 10
25 - 30 25
30 - 35 20
35 - 40 18
40 - 45 4
45 - 50 2

Draw 'a less than' type cumulative frequency curves (ogive). Hence find the median.


For one term, absentee record of students is given below. If mean is 15.5, then the missing frequencies x and y are.

Number of days 0 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 TOTAL
Total Number of students 15 16 x 8 y 8 6 4 70

If the sum of all the frequencies is 24, then the value of z is:

Variable (x) 1 2 3 4 5
Frequency z 5 6 1 2

Find the unknown entries a, b, c, d, e, f in the following distribution of heights of students in a class:

Height
(in cm)
Frequency Cumulative frequency
150 – 155 12 a
155 – 160 b 25
160 – 165 10 c
165 – 170 d 43
170 – 175 e 48
175 – 180 2 f
Total 50  

The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:

Age (in years) 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 60 – 70
Number of patients 60 42 55 70 53 20

Form: More than type cumulative frequency distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×