हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Choose the correct alternative: The value of klimx→kx-[x], where k is an integer is - Mathematics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

The value of `lim_(x -> "k") x - [x]`, where k is an integer is

विकल्प

  • – 1

  • 1

  • 0

  • 2

MCQ

उत्तर

1

shaalaa.com
Continuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.6 [पृष्ठ १३१]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.6 | Q 20 | पृष्ठ १३१

संबंधित प्रश्न

Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

x2 cos x


Examine the continuity of the following:

e2x + x2


Examine the continuity of the following:

x . log x


Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`


Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",",  0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`


For what value of `alpha` is this function `f(x) = {{:((x^4 - 1)/(x - 1)",",  "if"  x ≠ 1),(alpha",",  "if"  x = 1):}` continuous at x = 1?


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:(2x + 1",",  "if"  x ≤ - 1),(3x",",  "if"  - 1 < x < 1),(2x - 1",",  "if"  x ≥ 1):}`


A function f is defined as follows:

`f(x) = {{:(0,  "for"  x < 0;),(x,  "for"  0 ≤ x ≤ 1;),(- x^2 +4x - 2, "for"  1 ≤ x ≤ 3;),(4 - x,  "for"  x ≥ 3):}`
Is the function continuous?


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^2 - 2x - 8)/(x + 2), x_0` = – 2


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Choose the correct alternative:

At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×