Advertisements
Advertisements
प्रश्न
Examine the continuity of the following:
x . log x
उत्तर
Let f(x) = x log x
The function f(x) is defined in the open interval `(0, oo)` since log x is defined for x > 0.
Let x0 be an arbitrary point in `(0, oo)`.
Then `lim_(x -> x_0) f(x) = lim_(x -> x_0) x log x`
= x0 log x0
f(x0) = x0 log x0
From equation (1) and (2) we have
`lim_(x -> x_0) f(x) = f(x_0)`
∴ The limit of the function f(x) exists at x = x0 and is equal to the value of the function.
Since x0 is an arbitrary point the above is true for all points in `(0, oo)`.
∴ f(x) is continuous at all points of `(0, oo)`.
APPEARS IN
संबंधित प्रश्न
Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R
Examine the continuity of the following:
x2 cos x
Examine the continuity of the following:
e2x + x2
Examine the continuity of the following:
`(x^2 - 16)/(x + 4)`
Examine the continuity of the following:
`|x - 2|/|x + 1|`
Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",", "if", x ≤ 3),(4x - 5",", "if", x > 3):}`
Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",", "if", x ≥ 2),(x^2",", "if", x < 2):}`
At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:
x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if" x ≠ 3),(5",", "if" x = 3):}`
Show that the function `{{:((x^3 - 1)/(x - 1)",", "if" x ≠ 1),(3",", "if" x = 1):}` is continuous om `(- oo, oo)`
Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.
`f(x) = {{:(2x + 1",", "if" x ≤ - 1),(3x",", "if" - 1 < x < 1),(2x - 1",", "if" x ≥ 1):}`
Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.
`f(x) = (3 - sqrt(x))/(9 - x), x_0` = 9
State how continuity is destroyed at x = x0 for the following graphs.
State how continuity is destroyed at x = x0 for the following graphs.
Choose the correct alternative:
The value of `lim_(x -> "k") x - [x]`, where k is an integer is
Choose the correct alternative:
Let f : R → R be defined by `f(x) = {{:(x, x "is irrational"),(1 - x, x "is rational"):}` then f is
Choose the correct alternative:
Let a function f be defined by `f(x) = (x - |x|)/x` for x ≠ 0 and f(0) = 2. Then f is