English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Examine the continuity of the following: x . log x - Mathematics

Advertisements
Advertisements

Question

Examine the continuity of the following:

x . log x

Sum

Solution

Let f(x) = x log x

The function f(x) is defined in the open interval `(0, oo)` since log x is defined for x > 0.

Let x0 be an arbitrary point in `(0, oo)`.

Then `lim_(x -> x_0) f(x) =  lim_(x -> x_0)  x log x`

= x0 log x0

f(x0) = x0 log x0

From equation (1) and (2) we have

`lim_(x -> x_0) f(x) = f(x_0)`

∴ The limit of the function f(x) exists at x = x0 and is equal to the value of the function.

Since x0 is an arbitrary point the above is true for all points in `(0, oo)`.

∴ f(x) is continuous at all points of `(0, oo)`.

shaalaa.com
Continuity
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [Page 127]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 2. (v) | Page 127

RELATED QUESTIONS

Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

ex tan x


Examine the continuity of the following:

|x + 2| + |x – 1|


Examine the continuity of the following:

cot x + tan x


Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",",  "if",  x ≤ 3),(4x - 5",",  "if",  x > 3):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`


For what value of `alpha` is this function `f(x) = {{:((x^4 - 1)/(x - 1)",",  "if"  x ≠ 1),(alpha",",  "if"  x = 1):}` continuous at x = 1?


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:(2x + 1",",  "if"  x ≤ - 1),(3x",",  "if"  - 1 < x < 1),(2x - 1",",  "if"  x ≥ 1):}`


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Choose the correct alternative:

The value of `lim_(x -> "k") x - [x]`, where k is an integer is


Choose the correct alternative:

At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is


Choose the correct alternative:

The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×