Advertisements
Advertisements
Question
Examine the continuity of the following:
x . log x
Solution
Let f(x) = x log x
The function f(x) is defined in the open interval `(0, oo)` since log x is defined for x > 0.
Let x0 be an arbitrary point in `(0, oo)`.
Then `lim_(x -> x_0) f(x) = lim_(x -> x_0) x log x`
= x0 log x0
f(x0) = x0 log x0
From equation (1) and (2) we have
`lim_(x -> x_0) f(x) = f(x_0)`
∴ The limit of the function f(x) exists at x = x0 and is equal to the value of the function.
Since x0 is an arbitrary point the above is true for all points in `(0, oo)`.
∴ f(x) is continuous at all points of `(0, oo)`.
APPEARS IN
RELATED QUESTIONS
Examine the continuity of the following:
x + sin x
Examine the continuity of the following:
ex tan x
Examine the continuity of the following:
|x + 2| + |x – 1|
Examine the continuity of the following:
cot x + tan x
Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",", "if", x ≤ 3),(4x - 5",", "if", x > 3):}`
At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:
x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`
At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:
x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if" x ≠ 3),(5",", "if" x = 3):}`
For what value of `alpha` is this function `f(x) = {{:((x^4 - 1)/(x - 1)",", "if" x ≠ 1),(alpha",", "if" x = 1):}` continuous at x = 1?
Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.
`f(x) = {{:(2x + 1",", "if" x ≤ - 1),(3x",", "if" - 1 < x < 1),(2x - 1",", "if" x ≥ 1):}`
Find the constant b that makes g continuous on `(- oo, oo)`.
`g(x) = {{:(x^2 - "b"^2,"if" x < 4),("b"x + 20, "if" x ≥ 4):}`
Consider the function `f(x) = x sin pi/x`. What value must we give f(0) in order to make the function continuous everywhere?
State how continuity is destroyed at x = x0 for the following graphs.
Choose the correct alternative:
If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to
Choose the correct alternative:
The value of `lim_(x -> "k") x - [x]`, where k is an integer is
Choose the correct alternative:
At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is
Choose the correct alternative:
The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is