Advertisements
Advertisements
Question
Examine the continuity of the following:
ex tan x
Solution
Let f(x) = ex tan x
f(x) is defined at ail points of R.
Expect at `(2"n" + 1) pi/2`, n ∈ Z.
Let x0 be an arbitrary point in `"R" - (2"n" + 1) pi/2`, n ∈ Z
Then `lim_(x -> x_0) f(x) = lim_(x -> x_0) "e"^x tan x`
= `"e"^(x_0) tan x_0` .......(1)
`f(x_0) = "e"^(x_0) tan x_0` .......(2)
From equation (1) and (2) we get
`lim_(x -> x_0) "e"^x tan x = f(x_0)`
∴ Limit at x = x0 exist and is equal to the value of the function f(x) at x = x0.
Since x0 is arbitrary the limit of the function. f(x) exists at all points in `"R" - (2"n" + 1) pi/2`, n ∈ Z and is equal to the value of the function f(x) at that points.
∴ f(x) satisfies all conditions for continuity.
Hence, f(x) is continuous at all points of `"R" - (2"n" + 1) pi/2`, n ∈ Z
APPEARS IN
RELATED QUESTIONS
Examine the continuity of the following:
e2x + x2
Examine the continuity of the following:
x . log x
Examine the continuity of the following:
`(x^2 - 16)/(x + 4)`
Find the points of discontinuity of the function f, where `f(x) = {{:(x^3 - 3",", "if" x ≤ 2),(x^2 + 1",", "if" x < 2):}`
Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",", 0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`
At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:
x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`
For what value of `alpha` is this function `f(x) = {{:((x^4 - 1)/(x - 1)",", "if" x ≠ 1),(alpha",", "if" x = 1):}` continuous at x = 1?
Let `f(x) = {{:(0",", "if" x < 0),(x^2",", "if" 0 ≤ x ≤ 2),(4",", "if" x ≥ 2):}`. Graph the function. Show that f(x) continuous on `(- oo, oo)`
Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.
`f(x) = (x^3 + 64)/(x + 4), x_0` = – 4
Find the constant b that makes g continuous on `(- oo, oo)`.
`g(x) = {{:(x^2 - "b"^2,"if" x < 4),("b"x + 20, "if" x ≥ 4):}`
State how continuity is destroyed at x = x0 for the following graphs.
State how continuity is destroyed at x = x0 for the following graphs.
Choose the correct alternative:
If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to
Choose the correct alternative:
At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is
Choose the correct alternative:
Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to