Advertisements
Advertisements
Question
Examine the continuity of the following:
`(x^2 - 16)/(x + 4)`
Solution
Let fx) = `(x^2 - 16)/(x + 4)`
f(x) is not defined at x = – 4
∴ f(x) is defined for all points of R – {– 4}.
Let x0 be an arbitrary point in R – {– 4}.
Then `lim_(x -> x_0) f(x) = lim_(x -> x_0) (x^2 - 16)/(x + 4)`
= `(x_0^2 - 16)/(x_0 + 4)` ........(1)
`f(x_0) = (x_0^2 - 16)/(x_0 + 4)` ........(2)
From equation (1) and (2) we have
`lim_(x -> x_0) (x^2 - 16)/(x + 4)= f(x_0)`
Thus the limit of the function f(x) exist at x = x0 and is equal to the value of the function f(x) at x = x0.
Since x0 is an arbitrary point in R – {– 4} the above result is true for all points in R – {– 4}.
∴ f(x) is continuous at all points of R – {– 4}.
APPEARS IN
RELATED QUESTIONS
Examine the continuity of the following:
x2 cos x
Examine the continuity of the following:
ex tan x
Examine the continuity of the following:
e2x + x2
Examine the continuity of the following:
x . log x
Examine the continuity of the following:
cot x + tan x
Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",", "if", x ≤ 3),(4x - 5",", "if", x > 3):}`
Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",", 0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`
At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:
x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`
Show that the function `{{:((x^3 - 1)/(x - 1)",", "if" x ≠ 1),(3",", "if" x = 1):}` is continuous om `(- oo, oo)`
Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.
`f(x) = (x^2 - 2x - 8)/(x + 2), x_0` = – 2
Find the constant b that makes g continuous on `(- oo, oo)`.
`g(x) = {{:(x^2 - "b"^2,"if" x < 4),("b"x + 20, "if" x ≥ 4):}`
Consider the function `f(x) = x sin pi/x`. What value must we give f(0) in order to make the function continuous everywhere?
Choose the correct alternative:
If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to
Choose the correct alternative:
At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is
Choose the correct alternative:
Let f : R → R be defined by `f(x) = {{:(x, x "is irrational"),(1 - x, x "is rational"):}` then f is
Choose the correct alternative:
The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is
Choose the correct alternative:
Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to
Choose the correct alternative:
Let a function f be defined by `f(x) = (x - |x|)/x` for x ≠ 0 and f(0) = 2. Then f is