English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Examine the continuity of the following: x2-16x+4 - Mathematics

Advertisements
Advertisements

Question

Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`

Sum

Solution

Let fx) = `(x^2 - 16)/(x + 4)`

f(x) is not defined at x = – 4

∴ f(x) is defined for all points of R – {– 4}.

Let x0 be an arbitrary point in R – {– 4}.

Then `lim_(x -> x_0) f(x) =  lim_(x -> x_0) (x^2 - 16)/(x + 4)`

= `(x_0^2 - 16)/(x_0 + 4)` ........(1)

`f(x_0) = (x_0^2 - 16)/(x_0 + 4)`  ........(2)

From equation (1) and (2) we have

`lim_(x -> x_0) (x^2 - 16)/(x + 4)= f(x_0)`

Thus the limit of the function f(x) exist at x = x0 and is equal to the value of the function f(x) at x = x0.

Since x0 is an arbitrary point in R – {– 4} the above result is true for all points in R – {– 4}.

∴ f(x) is continuous at all points of R – {– 4}.

shaalaa.com
Continuity
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [Page 127]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 2. (vii) | Page 127

RELATED QUESTIONS

Examine the continuity of the following:

x2 cos x


Examine the continuity of the following:

ex tan x


Examine the continuity of the following:

e2x + x2


Examine the continuity of the following:

x . log x


Examine the continuity of the following:

cot x + tan x


Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",",  "if",  x ≤ 3),(4x - 5",",  "if",  x > 3):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",",  0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`


Show that the function `{{:((x^3 - 1)/(x - 1)",",  "if"  x ≠ 1),(3",",  "if"  x = 1):}` is continuous om `(- oo, oo)`


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^2 - 2x - 8)/(x + 2), x_0` = – 2


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Choose the correct alternative:

At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Choose the correct alternative:

The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is


Choose the correct alternative:

Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to


Choose the correct alternative:

Let a function f be defined by `f(x) = (x - |x|)/x` for x ≠ 0 and f(0) = 2. Then f is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×