English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Examine the continuity of the following: sinxx2 - Mathematics

Advertisements
Advertisements

Question

Examine the continuity of the following:

`sinx/x^2`

Sum
True or False

Solution

f(x) = `sinx/x^2`

f(x) is not defined at x = 0

∴ f(x) is defined for all points of R – {0}

Let x0 be an arbitrary point in R – {0}.

Then `lim_(x -> x_0) f(x) =  lim_(x -> x_0) sinx/x^2`

= `(sin x_0)/(x_0^2)`  .......(1)

`f(x_0) = (sin x_0)/(x_0^2)`  .......(2)

From equation (1) and (2) we have

`lim_(x -> x_0) sinx/x^2 = f(x_0)`

∴ The limit of the function f(x) exist at x = x0 and is equal to the value of the function f(x) at x = x0.

Since x0 is an arbitrary point in R – {0}, the above result is true for all points in R – {0}.

∴ f(x) is continuous at all points of R – {0}.

shaalaa.com
Continuity
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [Page 127]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 2. (vi) | Page 127

RELATED QUESTIONS

Examine the continuity of the following:

x2 cos x


Examine the continuity of the following:

|x + 2| + |x – 1|


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",",  "if",  x ≥ 2),(x^2",",  "if",  x < 2):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`


Let `f(x) = {{:(0",",  "if"  x < 0),(x^2",",  "if"  0 ≤ x ≤ 2),(4",",  "if"  x ≥ 2):}`. Graph the function. Show that f(x) continuous on `(- oo, oo)`


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:((x - 1)^3",",  "if"  x < 0),((x + 1)^3",",  "if"  x ≥ 0):}`


A function f is defined as follows:

`f(x) = {{:(0,  "for"  x < 0;),(x,  "for"  0 ≤ x ≤ 1;),(- x^2 +4x - 2, "for"  1 ≤ x ≤ 3;),(4 - x,  "for"  x ≥ 3):}`
Is the function continuous?


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^2 - 2x - 8)/(x + 2), x_0` = – 2


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^3 + 64)/(x + 4), x_0` = – 4


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (3 - sqrt(x))/(9 - x), x_0` = 9


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

Let the function f be defined by `f(x) = {{:(3x, 0 ≤ x ≤ 1),(-3 + 5, 1 < x ≤ 2):}`, then


Choose the correct alternative:

The value of `lim_(x -> "k") x - [x]`, where k is an integer is


Choose the correct alternative:

At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Choose the correct alternative:

Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×