English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Find the points of discontinuity of the function f, where ,if,iff(x)={x+2, if x≥2x2, if x<2 - Mathematics

Advertisements
Advertisements

Question

Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",",  "if",  x ≥ 2),(x^2",",  "if",  x < 2):}`

Sum

Solution

`lim_(x -> 2^-) f(x) = lim_(x -> 2^-) x^2`

`lim_(x -> 2^-) f(x)` = 22 = 4  .......(1)

`lim_(x -> 2^+) f(x) = lim_(x -> 2^+) (x + 2)`

`lim_(x -> 2^+) f(x)` = 2 + 2 = 4  .......(2)

From equation (1) and (2), we get

`lim_(x -> 2^+) f(x) = lim_(x -> 2^+) f(x)`

∴ `lim_(x -> 2) f(x)` exist.

Let x0 be an arbitrary point such that x0 < 2.

Then `lim_(x -> x_0) f(x) =  lim_(x -> x_0) x^2`

`lim_(x -> x_0) f(x) =  x_0^2`

`f(x_0) = x_0^2`

∴ `lim_(x -> x_0) f(x) = f(x_0)`

For the point x0 < 2, we have the limit of the function that exists and is equal to the value of the function at that point.

Since x0 is an arbitrary point the above result is true for all x < 2.

∴ f(x) is continuous in `(- oo, 2)`.

Let x0 be an arbitrary point such that x0 > 2

Then `lim_(x -> x_0) f(x) =  lim_(x -> x_0) (x + 2)`

= x0 + 2

`f(x_0) = x_0 + 2`

∴ `lim_(x -> x_0) f(x) = f(x_0)`

∴ For the point x0 > 2, the limit of the function exists and is equal to the value of the function.

Since x0 is an arbitrary point the above result is true for all x > 2.

∴ The function is continuous at all points of `(2, oo)`.

Hence the given function is continuous at all points of R.

shaalaa.com
Continuity
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [Page 127]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 3. (ii) | Page 127

RELATED QUESTIONS

Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R


Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

x2 cos x


Examine the continuity of the following:

`sinx/x^2`


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Examine the continuity of the following:

cot x + tan x


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`


Show that the function `{{:((x^3 - 1)/(x - 1)",",  "if"  x ≠ 1),(3",",  "if"  x = 1):}` is continuous om `(- oo, oo)`


If f and g are continuous functions with f(3) = 5 and `lim_(x -> 3) [2f(x) - g(x)]` = 4, find g(3)


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:(2x + 1",",  "if"  x ≤ - 1),(3x",",  "if"  - 1 < x < 1),(2x - 1",",  "if"  x ≥ 1):}`


A function f is defined as follows:

`f(x) = {{:(0,  "for"  x < 0;),(x,  "for"  0 ≤ x ≤ 1;),(- x^2 +4x - 2, "for"  1 ≤ x ≤ 3;),(4 - x,  "for"  x ≥ 3):}`
Is the function continuous?


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

Let the function f be defined by `f(x) = {{:(3x, 0 ≤ x ≤ 1),(-3 + 5, 1 < x ≤ 2):}`, then


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Choose the correct alternative:

The value of `lim_(x -> "k") x - [x]`, where k is an integer is


Choose the correct alternative:

At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×