English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

If f and g are continuous functions with f(3) = 5 and limx→3[2f(x)-g(x)] = 4, find g(3) - Mathematics

Advertisements
Advertisements

Question

If f and g are continuous functions with f(3) = 5 and `lim_(x -> 3) [2f(x) - g(x)]` = 4, find g(3)

Sum

Solution

Given f and g are continuous functions.

∴ `lim_(x -> 3) f(x) = f(3)`  ........(1)

`lim_(x -> 3) g(x) = g(3)`   ........(2)

Given `f(3)` = 5 and

`lim_(x -> 3) [2f(x) - g(x)]` = 4

`lim_(x -> 3) 2f(x) - lim_(x -> 3) g(x)` = 4

`2 lim_(x -> 3) f(x) - lim_(x -> 3) g(x)` = 4

2f(3) – g(3) = 4

2 × 5 – g(3) = 4

10 – 4 = g(3)

g(3) = 6

shaalaa.com
Continuity
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [Page 128]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 8 | Page 128

RELATED QUESTIONS

Examine the continuity of the following:

e2x + x2


Examine the continuity of the following:

x . log x


Examine the continuity of the following:

|x + 2| + |x – 1|


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Examine the continuity of the following:

cot x + tan x


Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",",  "if",  x ≥ 2),(x^2",",  "if",  x < 2):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:(2x + 1",",  "if"  x ≤ - 1),(3x",",  "if"  - 1 < x < 1),(2x - 1",",  "if"  x ≥ 1):}`


A function f is defined as follows:

`f(x) = {{:(0,  "for"  x < 0;),(x,  "for"  0 ≤ x ≤ 1;),(- x^2 +4x - 2, "for"  1 ≤ x ≤ 3;),(4 - x,  "for"  x ≥ 3):}`
Is the function continuous?


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (3 - sqrt(x))/(9 - x), x_0` = 9


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


The function `f(x) = (x^2 - 1)/(x^3 - 1)` is not defined at x = 1. What value must we give f(1) inorder to make f(x) continuous at x =1?


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

Let the function f be defined by `f(x) = {{:(3x, 0 ≤ x ≤ 1),(-3 + 5, 1 < x ≤ 2):}`, then


Choose the correct alternative:

At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Choose the correct alternative:

The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×