English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer: x0 = 3, ,if,iff(x)={x2-9x-3,if x≠35,if x=3 - Mathematics

Advertisements
Advertisements

Question

At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`

Sum

Solution

`lim_(x -> 3^-) f(x) =  lim_(x -> 3^-) (x^2 - 9)/(x - 3)`

= `lim_(x -> 3^-) ((x + 3)(x - 3))/(x - 3)`

= `lim_(x -> 3^-) (x + 3)`

= 3 + 3

 = 6 .........(1)

`lim_(x -> 3^+) f(x) =  lim_(x -> 3^+) (x^2 - 9)/(x - 3)`

= `lim_(x -> 3^+) ((x + 3)(x - 3))/(x - 3)`

= `lim_(x -> 3^+) (x + 3)`

= 3 + 3

 = 6 .........(2)

From equations (1) and (2)

`lim_(x -> 3^-) f(x) =  lim_(x -> 3^-) f(x)` = 6

∴ `lim_(x -> 3) f(x)` = 6  ........(3)

`f(3)` = 5  ........(4)

From equations (3) and (4) we have

`lim_(x -> 3) f(x) ≠ f(3)`

∴ f(x) is not continuous at x0 = 3.

shaalaa.com
Continuity
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [Page 127]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 4. (ii) | Page 127

RELATED QUESTIONS

Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R


Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

x2 cos x


Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`


Examine the continuity of the following:

|x + 2| + |x – 1|


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",",  "if",  x ≥ 2),(x^2",",  "if",  x < 2):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(x^3 - 3",",  "if"  x ≤ 2),(x^2 + 1",",  "if"  x < 2):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",",  0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`


For what value of `alpha` is this function `f(x) = {{:((x^4 - 1)/(x - 1)",",  "if"  x ≠ 1),(alpha",",  "if"  x = 1):}` continuous at x = 1?


If f and g are continuous functions with f(3) = 5 and `lim_(x -> 3) [2f(x) - g(x)]` = 4, find g(3)


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

Let the function f be defined by `f(x) = {{:(3x, 0 ≤ x ≤ 1),(-3 + 5, 1 < x ≤ 2):}`, then


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Choose the correct alternative:

The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is


Choose the correct alternative:

Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×