हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer: x0 = 3, ,if,iff(x)={x2-9x-3,if x≠35,if x=3 - Mathematics

Advertisements
Advertisements

प्रश्न

At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`

योग

उत्तर

`lim_(x -> 3^-) f(x) =  lim_(x -> 3^-) (x^2 - 9)/(x - 3)`

= `lim_(x -> 3^-) ((x + 3)(x - 3))/(x - 3)`

= `lim_(x -> 3^-) (x + 3)`

= 3 + 3

 = 6 .........(1)

`lim_(x -> 3^+) f(x) =  lim_(x -> 3^+) (x^2 - 9)/(x - 3)`

= `lim_(x -> 3^+) ((x + 3)(x - 3))/(x - 3)`

= `lim_(x -> 3^+) (x + 3)`

= 3 + 3

 = 6 .........(2)

From equations (1) and (2)

`lim_(x -> 3^-) f(x) =  lim_(x -> 3^-) f(x)` = 6

∴ `lim_(x -> 3) f(x)` = 6  ........(3)

`f(3)` = 5  ........(4)

From equations (3) and (4) we have

`lim_(x -> 3) f(x) ≠ f(3)`

∴ f(x) is not continuous at x0 = 3.

shaalaa.com
Continuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 4. (ii) | पृष्ठ १२७

संबंधित प्रश्न

Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",",  "if",  x ≤ 3),(4x - 5",",  "if",  x > 3):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",",  "if",  x ≥ 2),(x^2",",  "if",  x < 2):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(x^3 - 3",",  "if"  x ≤ 2),(x^2 + 1",",  "if"  x < 2):}`


Show that the function `{{:((x^3 - 1)/(x - 1)",",  "if"  x ≠ 1),(3",",  "if"  x = 1):}` is continuous om `(- oo, oo)`


For what value of `alpha` is this function `f(x) = {{:((x^4 - 1)/(x - 1)",",  "if"  x ≠ 1),(alpha",",  "if"  x = 1):}` continuous at x = 1?


Let `f(x) = {{:(0",",  "if"  x < 0),(x^2",",  "if"  0 ≤ x ≤ 2),(4",",  "if"  x ≥ 2):}`. Graph the function. Show that f(x) continuous on `(- oo, oo)`


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:((x - 1)^3",",  "if"  x < 0),((x + 1)^3",",  "if"  x ≥ 0):}`


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


The function `f(x) = (x^2 - 1)/(x^3 - 1)` is not defined at x = 1. What value must we give f(1) inorder to make f(x) continuous at x =1?


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

The value of `lim_(x -> "k") x - [x]`, where k is an integer is


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Choose the correct alternative:

Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×