हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Examine the continuity of the following: x2-16x+4 - Mathematics

Advertisements
Advertisements

प्रश्न

Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`

योग

उत्तर

Let fx) = `(x^2 - 16)/(x + 4)`

f(x) is not defined at x = – 4

∴ f(x) is defined for all points of R – {– 4}.

Let x0 be an arbitrary point in R – {– 4}.

Then `lim_(x -> x_0) f(x) =  lim_(x -> x_0) (x^2 - 16)/(x + 4)`

= `(x_0^2 - 16)/(x_0 + 4)` ........(1)

`f(x_0) = (x_0^2 - 16)/(x_0 + 4)`  ........(2)

From equation (1) and (2) we have

`lim_(x -> x_0) (x^2 - 16)/(x + 4)= f(x_0)`

Thus the limit of the function f(x) exist at x = x0 and is equal to the value of the function f(x) at x = x0.

Since x0 is an arbitrary point in R – {– 4} the above result is true for all points in R – {– 4}.

∴ f(x) is continuous at all points of R – {– 4}.

shaalaa.com
Continuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 2. (vii) | पृष्ठ १२७

संबंधित प्रश्न

Examine the continuity of the following:

e2x + x2


Examine the continuity of the following:

x . log x


Examine the continuity of the following:

cot x + tan x


Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",",  "if",  x ≥ 2),(x^2",",  "if",  x < 2):}`


Show that the function `{{:((x^3 - 1)/(x - 1)",",  "if"  x ≠ 1),(3",",  "if"  x = 1):}` is continuous om `(- oo, oo)`


Let `f(x) = {{:(0",",  "if"  x < 0),(x^2",",  "if"  0 ≤ x ≤ 2),(4",",  "if"  x ≥ 2):}`. Graph the function. Show that f(x) continuous on `(- oo, oo)`


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:(2x + 1",",  "if"  x ≤ - 1),(3x",",  "if"  - 1 < x < 1),(2x - 1",",  "if"  x ≥ 1):}`


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:((x - 1)^3",",  "if"  x < 0),((x + 1)^3",",  "if"  x ≥ 0):}`


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^2 - 2x - 8)/(x + 2), x_0` = – 2


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^3 + 64)/(x + 4), x_0` = – 4


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Choose the correct alternative:

The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is


Choose the correct alternative:

Let a function f be defined by `f(x) = (x - |x|)/x` for x ≠ 0 and f(0) = 2. Then f is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×