Advertisements
Advertisements
प्रश्न
Examine the continuity of the following:
|x + 2| + |x – 1|
उत्तर
Let f(x) = |x + 2| + |x – 1|
f(x) is defined for all points of R.
Let x0 be an arbitrary point in R.
Then `lim_(x -> x_0)f(x) = lim_(x -> x_0) (|x + 2| + |x - 1|)`
= `|x_0 + 2| + |x_0 - 1|` .......(1)
`f(x_0) = |x_0+ 2| + |x_0 - 1|` .......(2)
From equation (1) and (2) we get
`lim_(x -> x_0)f(x) = f(x_0)`
Thus the limit of the function f(x) exist at x = x0 and is equal to the value of the function at x = x0.
Since x = x0 is an arbitrary point in R, the above
result is true for all points in R.
Hence f(x) is continuous at all points of R.
APPEARS IN
संबंधित प्रश्न
Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R
Examine the continuity of the following:
ex tan x
Examine the continuity of the following:
x . log x
Find the points of discontinuity of the function f, where `f(x) = {{:(x^3 - 3",", "if" x ≤ 2),(x^2 + 1",", "if" x < 2):}`
At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:
x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if" x ≠ 3),(5",", "if" x = 3):}`
Let `f(x) = {{:(0",", "if" x < 0),(x^2",", "if" 0 ≤ x ≤ 2),(4",", "if" x ≥ 2):}`. Graph the function. Show that f(x) continuous on `(- oo, oo)`
Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.
`f(x) = (3 - sqrt(x))/(9 - x), x_0` = 9
Find the constant b that makes g continuous on `(- oo, oo)`.
`g(x) = {{:(x^2 - "b"^2,"if" x < 4),("b"x + 20, "if" x ≥ 4):}`
Consider the function `f(x) = x sin pi/x`. What value must we give f(0) in order to make the function continuous everywhere?
State how continuity is destroyed at x = x0 for the following graphs.
State how continuity is destroyed at x = x0 for the following graphs.
State how continuity is destroyed at x = x0 for the following graphs.
State how continuity is destroyed at x = x0 for the following graphs.
Choose the correct alternative:
The value of `lim_(x -> "k") x - [x]`, where k is an integer is
Choose the correct alternative:
Let f : R → R be defined by `f(x) = {{:(x, x "is irrational"),(1 - x, x "is rational"):}` then f is
Choose the correct alternative:
Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to