मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Examine the continuity of the following: |x + 2| + |x – 1| - Mathematics

Advertisements
Advertisements

प्रश्न

Examine the continuity of the following:

|x + 2| + |x – 1|

बेरीज

उत्तर

Let f(x) = |x + 2| + |x – 1|

f(x) is defined for all points of R.

Let x0 be an arbitrary point in R.

Then `lim_(x -> x_0)f(x) =  lim_(x -> x_0) (|x + 2| + |x - 1|)`

= `|x_0 + 2| + |x_0 - 1|`  .......(1)

`f(x_0) = |x_0+ 2| + |x_0 - 1|`  .......(2)

From equation (1) and (2) we get

`lim_(x -> x_0)f(x) =  f(x_0)`

Thus the limit of the function f(x) exist at x = x0 and is equal to the value of the function at x = x0.

Since x = x0 is an arbitrary point in R, the above
result is true for all points in R.

Hence f(x) is continuous at all points of R.

shaalaa.com
Continuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 2. (viii) | पृष्ठ १२७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×