हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Examine the continuity of the following: |x-2||x+1| - Mathematics

Advertisements
Advertisements

प्रश्न

Examine the continuity of the following:

`|x - 2|/|x + 1|`

योग

उत्तर

Let f(x) = `|x - 2|/|x + 1|`

f(x) is defined for all points of R except at x = – 1.

∴ f(x) is defined for all points of R – {– 1}.

Let x0 be an arbitrary point in R – {– 1}.

Then `lim_(x -> x_0) f(x) =  lim_(x ->x_0) |x - 2|/|x + 1|`

= `|x_0 - 2|/|x_0 + 1|`  .......(1)

`f(x_0) = |x_0 - 2|/|x_0 + 1|`  .......(2)

From equation (1) and (2) we have

`lim_(x -> x_0) f(x) = f(x_0)`

Hence the limit of the function f(x) at x = x0 exists and is equal to the value of the function at x = x0.

Since x = x0 is an arbitrary point in R – {– 1}, the above result is true for all points in R – {– 1).

∴ f(x) is continuous at all points of R – {– 1}.

shaalaa.com
Continuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 2. (ix) | पृष्ठ १२७

संबंधित प्रश्न

Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

ex tan x


Examine the continuity of the following:

e2x + x2


Examine the continuity of the following:

x . log x


Examine the continuity of the following:

`sinx/x^2`


Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`


Examine the continuity of the following:

|x + 2| + |x – 1|


Find the points of discontinuity of the function f, where `f(x) = {{:(x^3 - 3",",  "if"  x ≤ 2),(x^2 + 1",",  "if"  x < 2):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",",  0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:((x - 1)^3",",  "if"  x < 0),((x + 1)^3",",  "if"  x ≥ 0):}`


A function f is defined as follows:

`f(x) = {{:(0,  "for"  x < 0;),(x,  "for"  0 ≤ x ≤ 1;),(- x^2 +4x - 2, "for"  1 ≤ x ≤ 3;),(4 - x,  "for"  x ≥ 3):}`
Is the function continuous?


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^2 - 2x - 8)/(x + 2), x_0` = – 2


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^3 + 64)/(x + 4), x_0` = – 4


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

The function `f(x) = {{:((x^2 - 1)/(x^3 + 1), x ≠ - 1),("P", x = -1):}` is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is


Choose the correct alternative:

Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×