हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R

योग

उत्तर

f(x) = 2x2 + 3x – 5

Clearly f(x) is defined for all points of R.

Let x0 be an arbitrary point in R.

Then f(x0) = 2x02 + 3x0 – 5   .......(1)

`lim_(x -> x_0) f(x) =  lim_(x -> x_0) (2x^2 + 3x - 5)`

= 2x02 + 3x0 – 5   .......(2)

From equation (1) and (2)

`lim_(x -> x_0) f(x) = f(x_0)`

Thus, f(x) is defined at all points of R limit of f(x) exist at all points of R and is equal to the value of the function f (x).

Thus f(x) is continuous at all points of R.

shaalaa.com
Continuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 1 | पृष्ठ १२७

संबंधित प्रश्न

Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

x2 cos x


Examine the continuity of the following:

x . log x


Examine the continuity of the following:

`sinx/x^2`


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Find the points of discontinuity of the function f, where `f(x) = {{:(4x + 5",",  "if",  x ≤ 3),(4x - 5",",  "if",  x > 3):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(sinx",",  0 ≤ x ≤ pi/4),(cos x",", pi/4 < x < pi/2):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`


For what value of `alpha` is this function `f(x) = {{:((x^4 - 1)/(x - 1)",",  "if"  x ≠ 1),(alpha",",  "if"  x = 1):}` continuous at x = 1?


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^3 + 64)/(x + 4), x_0` = – 4


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (3 - sqrt(x))/(9 - x), x_0` = 9


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


The function `f(x) = (x^2 - 1)/(x^3 - 1)` is not defined at x = 1. What value must we give f(1) inorder to make f(x) continuous at x =1?


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

Let f : R → R be defined by `f(x) = {{:(x, x  "is irrational"),(1 - x, x  "is rational"):}` then f is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×