हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

For what value of α is this function ,if,iff(x)={x4-1x-1, if x≠1α, if x=1 continuous at x = 1? - Mathematics

Advertisements
Advertisements

प्रश्न

For what value of `alpha` is this function `f(x) = {{:((x^4 - 1)/(x - 1)",",  "if"  x ≠ 1),(alpha",",  "if"  x = 1):}` continuous at x = 1?

योग

उत्तर

`f(x) = {{:((x^4 - 1)/(x - 1)",",  "if"  x ≠ 1),(alpha",",  "if"  x = 1):}` 

Given that f(x) is continuous at x = 1.

∴ `lim_(x -> 1) f(x) = f(1)`   .......(1)

`lim_(x -> 1^-) f(x)  =  lim_(x -> 1^-) (x^4 - 1)/(x - 1)`

= `lim_(x -> 1^-) ((x^2 - 1)(x^2 + 1))/(x - 1)`

= `lim_(x -> 1^-) ((x + 1)(x - 1)(x^2 + 1))/(x - 1)`

= `lim_(x -> 1^-) (x + 1)(x^2 + 1)`

= `(1 + 1)(1^2 + 1)`

`lim_(x -> 1^-) f(x)` = 2 × 2 = 4  .......(2)

`lim_(x -> 1^+) f(x) =  lim_(x -> 1^+) (x^4 - 1)/(x - 1)`

= `lim_(x -> 1^+) ((x^2 - 1)(x^2 + 1))/(x - 1)`

= `lim_(x -> 1^+) ((x + 1)(x - 1)(x^2 + 1))/(x - 1)`

= `lim_(x -> 1^+) (x + 1)(x^2 + 1)`

= `(1 + 1)(1^2 + 1)`

`lim_(x -> 1^-) f(x)` = 2 × 2 = 4  .......(3)

From equations (2) and (3) we have

`lim_(x -> 1^-) f(x) =  lim_(x -> 1^-) f(x)` = 4

∴ `lim_(x -> 1) f(x)` = 4

`f(1) = alpha`

∴ Equation (1) ⇒ 4 = `alpha`

shaalaa.com
Continuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 6 | पृष्ठ १२७

संबंधित प्रश्न

Prove that f(x) = 2x2 + 3x - 5 is continuous at all points in R


Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

ex tan x


Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`


Examine the continuity of the following:

|x + 2| + |x – 1|


Examine the continuity of the following:

`|x - 2|/|x + 1|`


Examine the continuity of the following:

cot x + tan x


Find the points of discontinuity of the function f, where `f(x) = {{:(x + 2",",  "if",  x ≥ 2),(x^2",",  "if",  x < 2):}`


Find the points of discontinuity of the function f, where `f(x) = {{:(x^3 - 3",",  "if"  x ≤ 2),(x^2 + 1",",  "if"  x < 2):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`


Show that the function `{{:((x^3 - 1)/(x - 1)",",  "if"  x ≠ 1),(3",",  "if"  x = 1):}` is continuous om `(- oo, oo)`


Let `f(x) = {{:(0",",  "if"  x < 0),(x^2",",  "if"  0 ≤ x ≤ 2),(4",",  "if"  x ≥ 2):}`. Graph the function. Show that f(x) continuous on `(- oo, oo)`


Find the points at which f is discontinuous. At which of these points f is continuous from the right, from the left, or neither? Sketch the graph of f.

`f(x) = {{:((x - 1)^3",",  "if"  x < 0),((x + 1)^3",",  "if"  x ≥ 0):}`


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^3 + 64)/(x + 4), x_0` = – 4


Find the constant b that makes g continuous on `(- oo, oo)`.

`g(x) = {{:(x^2 - "b"^2,"if"  x < 4),("b"x + 20,  "if"  x ≥ 4):}`


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×