हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

If f and g are continuous functions with f(3) = 5 and limx→3[2f(x)-g(x)] = 4, find g(3) - Mathematics

Advertisements
Advertisements

प्रश्न

If f and g are continuous functions with f(3) = 5 and `lim_(x -> 3) [2f(x) - g(x)]` = 4, find g(3)

योग

उत्तर

Given f and g are continuous functions.

∴ `lim_(x -> 3) f(x) = f(3)`  ........(1)

`lim_(x -> 3) g(x) = g(3)`   ........(2)

Given `f(3)` = 5 and

`lim_(x -> 3) [2f(x) - g(x)]` = 4

`lim_(x -> 3) 2f(x) - lim_(x -> 3) g(x)` = 4

`2 lim_(x -> 3) f(x) - lim_(x -> 3) g(x)` = 4

2f(3) – g(3) = 4

2 × 5 – g(3) = 4

10 – 4 = g(3)

g(3) = 6

shaalaa.com
Continuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.5 [पृष्ठ १२८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.5 | Q 8 | पृष्ठ १२८

संबंधित प्रश्न

Examine the continuity of the following:

x + sin x


Examine the continuity of the following:

x2 cos x


Examine the continuity of the following:

e2x + x2


Examine the continuity of the following:

`(x^2 - 16)/(x + 4)`


Examine the continuity of the following:

`|x - 2|/|x + 1|`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 1, `f(x) = {{:((x^2 - 1)/(x - 1)",", x ≠ 1),(2",", x = 1):}`


At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer:

x0 = 3, `f(x) = {{:((x^2 - 9)/(x - 3)",", "if"  x ≠ 3),(5",", "if"  x = 3):}`


Show that the function `{{:((x^3 - 1)/(x - 1)",",  "if"  x ≠ 1),(3",",  "if"  x = 1):}` is continuous om `(- oo, oo)`


Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

`f(x) = (x^3 + 64)/(x + 4), x_0` = – 4


Consider the function  `f(x) = x sin  pi/x`. What value must we give f(0) in order to make the function continuous everywhere?


The function `f(x) = (x^2 - 1)/(x^3 - 1)` is not defined at x = 1. What value must we give f(1) inorder to make f(x) continuous at x =1?


State how continuity is destroyed at x = x0 for the following graphs.


State how continuity is destroyed at x = x0 for the following graphs.


Choose the correct alternative:

Let the function f be defined by `f(x) = {{:(3x, 0 ≤ x ≤ 1),(-3 + 5, 1 < x ≤ 2):}`, then


Choose the correct alternative:

If f : R → R is defined by `f(x) = [x - 3] + |x - 4|` for x ∈ R then `lim_(x -> 3^-) f(x)` is equal to


Choose the correct alternative:

At x = `3/2` the function f(x) = `|2x - 3|/(2x - 3)` is


Choose the correct alternative:

Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×