Advertisements
Advertisements
प्रश्न
Compare the given quadratic equation to the general form and write values of a, b, c.
x2 – 7x + 5 = 0
उत्तर
x2 – 7x + 5 = 0
The general form of the quadratic equation is ax2 + bx + c = 0
Comparing x2 – 7x + 5 = 0 with the general form we have a = 1, b = - 7 and c = 5.
APPEARS IN
संबंधित प्रश्न
Compare the given quadratic equation to the general form and write values of a,b, c.
y2 = 7y
Solve using formula.
x2 + 6x + 5 = 0
Solve using formula.
3m2 + 2m – 7 = 0
Solve using formula.
5m2 – 4m – 2 = 0
Solve using formula.
y2 + `1/3`y = 2.
The roots of the following quadratic equation is real and equal, find k.
kx (x – 2) + 6 = 0
Find the value of discriminant of the following equation.
\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]
Determine the nature of root of the quadratic equation.
\[3 x^2 - 5x + 7 = 0\]
Determine the nature of root of the quadratic equation.
\[\sqrt{3} x^2 + \sqrt{2}x - 2\sqrt{3} = 0\]
Determine the nature of root of the quadratic equation.
m2 - 2m + 1 = 0
Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation \[2 x^2 + 2\left( p + q \right)x + p^2 + q^2 = 0\]
The difference between squares of two numbers is 120. The square of smaller number is twice the greater number. Find the numbers.
If α and β are the roots of the equation is 3x2 + x – 10 = 0, then the value of `1/α + 1/β` is ______.
If 2 and 5 are the roots of the quadratic equation, then complete the following activity to form quadratic equation:
Activity:
Let α = 2 and β = 5 are the roots of the quadratic equation.
Then quadratic equation is:
x2 − (α + β)x + αβ = 0
∴ `x^2 - (2 + square)x + square xx 5 = 0`
∴ `x^2 - square x + square = 0`