हिंदी

Compare the Given Quadratic Equations to the General Form and Write Values of A,B, C. 2m2 = 5m – 5 - Algebra

Advertisements
Advertisements

प्रश्न

Compare the given quadratic equation to the general form and write values of a,b, c.

2m2 = 5m – 5

योग

उत्तर

 2m2 = 5m – 5

\[\Rightarrow 2 m^2 - 5m + 5 = 0\]

General form of the quadratic equation is \[a x^2 + bx + c = 0\] Comparing 2m2 = 5m – 5 with the general form we have a = 2, b = \[-5\] and c = 5.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Quadratic Equations - Practice Set 2.4 [पृष्ठ ४३]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
अध्याय 2 Quadratic Equations
Practice Set 2.4 | Q 1.2 | पृष्ठ ४३

संबंधित प्रश्न

Compare the given quadratic equation to the general form and write values of a, b, c.

x2 – 7x + 5 = 0


Solve using formula.

x2 – 3x – 2 = 0


Solve using formula.

3m2 + 2m – 7 = 0


Solve using formula.

5m2 – 4m – 2 = 0


Solve using formula.

y2 + `1/3`y = 2.


Find the value of discriminant of the following equation.

2y2 − y + 2 = 0


Find the value of discriminant of the following equation.

5m2 - m = 0


Find the value of discriminant of the following equation.

\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]


One of the roots of quadratic equation \[2 x^2 + kx - 2 = 0\] is –2. find k.


Two roots of quadratic equation is given ; frame the equation.

 10 and –10


Two roots of quadratic equation is given ; frame the equation.

\[1 - 3\sqrt{5} \text{ and } 1 + 3\sqrt{5}\] 


Find m if (m – 12) x2 + 2(m – 12) x + 2 = 0 has real and equal roots.


The sum of two roots of a quadratic equation is 5 and sum of their cubes is 35, find the equation.


Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation \[2 x^2 + 2\left( p + q \right)x + p^2 + q^2 = 0\]


Mukund possesses Rs 50 more than what Sagar possesses. The product of the amount they have is 15,000. Find the amount each one has.

 

 


If α and β are the roots of the equation is 3x2 + x – 10 = 0, then the value of `1/α + 1/β` is ______.


If 2 and 5 are the roots of the quadratic equation, then complete the following activity to form quadratic equation:

Activity:

Let α = 2 and β = 5 are the roots of the quadratic equation.

Then quadratic equation is:

x2 − (α + β)x + αβ = 0

∴ `x^2 - (2 + square)x + square xx 5 = 0`

∴ `x^2 - square x + square = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×