हिंदी

Find m if (m – 12) x2 + 2(m – 12) x + 2 = 0 has real and equal roots. - Algebra

Advertisements
Advertisements

प्रश्न

Find m if (m – 12) x2 + 2(m – 12) x + 2 = 0 has real and equal roots.

योग

उत्तर

(m − 12)x2 + 2(m − 12)x + 2 = 0

Comparing the above equation with ax2 + bx + c = 0, we get

a = m − 12, b = 2(m − 12), c = 2

∆ = b2 − 4ac

b2 − 4ac = [2(m − 12)]2 − 4 × (m − 12) × 2

= 4(m – 12)2 – 8m + 96 

= 4(m2 − 24m + 144) − 8m + 96

= 4m2 - 96m + 576 − 8m + 96

= 4m2 − 104m + 672

The roots of the given quaaratic equation are real and equal.        ... (Given)

∴ b2 − 4ac = 0

∴ 4m2 - 104m + 672 = 0

∴ m2 − 26m + 168 = 0       ...(Dividing by 4)

∴ m − 12m - 14m + 168 = 0

∴ m(m − 12) − 14(m - 12) = 0

∴ (m −12)(m - 14) = 0

∴ m − 12 = 0 or m − 14 = 0

∴ m = 12 or m = 14

If m = 12, m − 12 = 0 and (m − 12)x2 = 0

The equation will not be a quadratic one.

∴ m = 12 is unacceptable.

∴ m = 14

∴ The value of m is 14.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Quadratic Equations - Problem Set 2 [पृष्ठ ५४]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
अध्याय 2 Quadratic Equations
Problem Set 2 | Q 8 | पृष्ठ ५४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×