हिंदी

Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation 2x2+2(p+q)x+p2+q2=0 - Algebra

Advertisements
Advertisements

प्रश्न

Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation \[2 x^2 + 2\left( p + q \right)x + p^2 + q^2 = 0\]

योग

उत्तर

\[2 x^2 + 2\left( p + q \right)x + p^2 + q^2 = 0\]

Let the roots of the given quadratic equation be  \[\alpha\] and \[\beta\] Sum of roots, \[\alpha\] + \[\beta\]

\[\frac{- 2\left( p + q \right)}{2} = - \left( p + q \right)\]

\[\Rightarrow \left( \alpha + \beta \right)^2 = \left( p + q \right)^2\]    ....(A)

\[\alpha\beta = \frac{p^2 + q^2}{2}\]

\[\left( \alpha - \beta \right)^2 = \left( \alpha + \beta \right)^2 - 4\alpha\beta\]

\[ = \left( p + q \right)^2 - 4\left( \frac{p^2 + q^2}{2} \right)\]

\[ = \left( p + q \right)^2 - 2\left( p^2 + q^2 \right)\]

\[ = - \left( p - q \right)^2 . . . . . \left( B \right)\]

\[A + B = \left( p + q \right)^2 - \left( p - q \right)^2 \]

\[ = \left( p + q - p + q \right)\left( p + q + p - q \right) \left[ \because x^2 - y^2 = \left( x - y \right)\left( x + y \right) \right]\]

\[ = 4pq\]

\[AB = \left( p + q \right)^2 \left[ - \left( p - q \right)^2 \right]\]

\[ = - \left( p^2 + q^2 + 2pq \right)\left( p^2 + q^2 - 2pq \right)\]

\[ = - \left[ \left( p^2 \right)^2 + \left( q^2 \right)^2 - 2 p^2 q^2 \right]\]

\[ = - \left( p^2 - q^2 \right)^2\]

The general form of a quadratic equation is
\[x^2 - \left( A + B \right)x + AB = 0\]

Putting the value of A and B we get \[x^2 - 4pqx - \left( p^2 - q^2 \right)^2 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Quadratic Equations - Problem Set 2 [पृष्ठ ५४]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
अध्याय 2 Quadratic Equations
Problem Set 2 | Q 10 | पृष्ठ ५४

संबंधित प्रश्न

Compare the given quadratic equation to the general form and write values of a,b, c.

2m2 = 5m – 5


Solve using formula.

x2 + 6x + 5 = 0


Solve using formula.

5m2 – 4m – 2 = 0


Solve using formula.

y2 + `1/3`y = 2.


With the help of the flow chart given below solve the equation \[x^2 + 2\sqrt{3}x + 3 = 0\] using the formula.


The roots of the following quadratic equation is real and equal, find k.

 kx (x – 2) + 6 = 0


Find the value of discriminant of the following equation.

2y2 − y + 2 = 0


One of the roots of quadratic equation \[2 x^2 + kx - 2 = 0\] is –2. find k.


Two roots of quadratic equation is given ; frame the equation.

 10 and –10


Two roots of quadratic equation is given ; frame the equation.

\[1 - 3\sqrt{5} \text{ and } 1 + 3\sqrt{5}\] 


Determine the nature of root of the quadratic equation.

\[3 x^2 - 5x + 7 = 0\]


Determine the nature of root of the quadratic equation.

\[\sqrt{3} x^2 + \sqrt{2}x - 2\sqrt{3} = 0\]


Determine the nature of root of the quadratic equation.

m2 - 2m + 1 = 0


Find m if (m – 12) x2 + 2(m – 12) x + 2 = 0 has real and equal roots.


Mukund possesses Rs 50 more than what Sagar possesses. The product of the amount they have is 15,000. Find the amount each one has.

 

 


The difference between squares of two numbers is 120. The square of smaller number is twice the greater number. Find the numbers. 


If α and β are the roots of the equation is 3x2 + x – 10 = 0, then the value of `1/α + 1/β` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×