Advertisements
Advertisements
प्रश्न
Two roots of quadratic equation is given ; frame the equation.
\[1 - 3\sqrt{5} \text{ and } 1 + 3\sqrt{5}\]
उत्तर
\[1 - 3\sqrt{5} \text{ and } 1 + 3\sqrt{5}\]
Sum of roots = \[1 - 3\sqrt{5} + 1 + 3\sqrt{5} = 2\]
Product of roots = \[\left( 1 - 3\sqrt{5} \right)\left( 1 + 3\sqrt{5} \right) = 1 - 45 = - 44\]
The general form of the quadratic equation is \[x^2 - \left( \text{ Sum of roots } \right)x + \text{ product of roots } = 0\]
So, the quadratic equation will be \[x^2 - 2x - 44 = 0\]
APPEARS IN
संबंधित प्रश्न
Compare the given quadratic equation to the general form and write values of a, b, c.
x2 – 7x + 5 = 0
Compare the given quadratic equation to the general form and write values of a,b, c.
2m2 = 5m – 5
Compare the given quadratic equation to the general form and write values of a,b, c.
y2 = 7y
Solve using formula.
x2 + 6x + 5 = 0
Solve using formula.
x2 – 3x – 2 = 0
Solve using formula.
3m2 + 2m – 7 = 0
Solve using formula.
5m2 – 4m – 2 = 0
Solve using formula.
5x2 + 13x + 8 = 0
The roots of the following quadratic equation is real and equal, find k.
3y2 + ky +12 = 0
Find the value of discriminant of the following equation.
\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]
One of the roots of quadratic equation \[2 x^2 + kx - 2 = 0\] is –2. find k.
Two roots of quadratic equation is given ; frame the equation.
0 and 7
Determine the nature of root of the quadratic equation.
\[3 x^2 - 5x + 7 = 0\]
Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation \[2 x^2 + 2\left( p + q \right)x + p^2 + q^2 = 0\]
The difference between squares of two numbers is 120. The square of smaller number is twice the greater number. Find the numbers.