हिंदी

Wo Roots of Quadratic Equations Are Given ; Frame the Equation. 1 − 3 √ 5 and 1 + 3 √ 5 - Algebra

Advertisements
Advertisements

प्रश्न

Two roots of quadratic equation is given ; frame the equation.

\[1 - 3\sqrt{5} \text{ and } 1 + 3\sqrt{5}\] 

योग

उत्तर

\[1 - 3\sqrt{5} \text{ and } 1 + 3\sqrt{5}\]

Sum of roots = \[1 - 3\sqrt{5} + 1 + 3\sqrt{5} = 2\]

Product of roots = \[\left( 1 - 3\sqrt{5} \right)\left( 1 + 3\sqrt{5} \right) = 1 - 45 = - 44\]

The general form of the quadratic equation is \[x^2 - \left( \text{ Sum of roots } \right)x + \text{ product of roots } = 0\]

So, the quadratic equation will be  \[x^2 - 2x - 44 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Quadratic Equations - Problem Set 2 [पृष्ठ ५४]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
अध्याय 2 Quadratic Equations
Problem Set 2 | Q 5.2 | पृष्ठ ५४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×