मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation 2x2+2(p+q)x+p2+q2=0 - Algebra

Advertisements
Advertisements

प्रश्न

Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation \[2 x^2 + 2\left( p + q \right)x + p^2 + q^2 = 0\]

बेरीज

उत्तर

\[2 x^2 + 2\left( p + q \right)x + p^2 + q^2 = 0\]

Let the roots of the given quadratic equation be  \[\alpha\] and \[\beta\] Sum of roots, \[\alpha\] + \[\beta\]

\[\frac{- 2\left( p + q \right)}{2} = - \left( p + q \right)\]

\[\Rightarrow \left( \alpha + \beta \right)^2 = \left( p + q \right)^2\]    ....(A)

\[\alpha\beta = \frac{p^2 + q^2}{2}\]

\[\left( \alpha - \beta \right)^2 = \left( \alpha + \beta \right)^2 - 4\alpha\beta\]

\[ = \left( p + q \right)^2 - 4\left( \frac{p^2 + q^2}{2} \right)\]

\[ = \left( p + q \right)^2 - 2\left( p^2 + q^2 \right)\]

\[ = - \left( p - q \right)^2 . . . . . \left( B \right)\]

\[A + B = \left( p + q \right)^2 - \left( p - q \right)^2 \]

\[ = \left( p + q - p + q \right)\left( p + q + p - q \right) \left[ \because x^2 - y^2 = \left( x - y \right)\left( x + y \right) \right]\]

\[ = 4pq\]

\[AB = \left( p + q \right)^2 \left[ - \left( p - q \right)^2 \right]\]

\[ = - \left( p^2 + q^2 + 2pq \right)\left( p^2 + q^2 - 2pq \right)\]

\[ = - \left[ \left( p^2 \right)^2 + \left( q^2 \right)^2 - 2 p^2 q^2 \right]\]

\[ = - \left( p^2 - q^2 \right)^2\]

The general form of a quadratic equation is
\[x^2 - \left( A + B \right)x + AB = 0\]

Putting the value of A and B we get \[x^2 - 4pqx - \left( p^2 - q^2 \right)^2 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Quadratic Equations - Problem Set 2 [पृष्ठ ५४]
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×