हिंदी

Define Capacitive reactance. - Physics

Advertisements
Advertisements

प्रश्न

Define Capacitive reactance.

परिभाषा

उत्तर

Effective resistance offered by the capacitor called capacitive reactance (ΧC).

`Χ_"C" = 1/omega_"C"`

`= 1/(2 pi " fC")`

shaalaa.com
Different Types of AC Circuits: AC Voltage Applied to a Capacitor
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

संबंधित प्रश्न

A 2 µF capacitor, 100 Ω resistor and 8 H inductor are connected in series with an AC source.
(i) What should be the frequency of the source such that current drawn in the circuit is maximum? What is this frequency called?
(ii) If the peak value of e.m.f. of the source is 200 V, find the maximum current.
(iii) Draw a graph showing variation of amplitude of circuit current with changing frequency of applied voltage in a series LRC circuit for two different values of resistance R1 and R2 (R1 > R2).
(iv) Define the term 'Sharpness of Resonance'. Under what condition, does a circuit become more selective?


Show that the current leads the voltage in phase by π/2 in an AC circuit containing an ideal capacitor ?


When an AC source is connected to a capacitor, there is a steady-state current in the circuit. Does it mean that the charges jump from one plate to the other to complete the circuit?


A current i1 = i0 sin ωt passes through a resistor of resistance R. How much thermal energy is produced in one time period? A current i2 = −i0 sin ωt passes through the resistor. How much thermal energy is produced in one time period? If i1 and i2 both pass through the resistor simultaneously, how much thermal energy is produced? Is the principle of superposition obeyed in this case?


Is energy produced when a transformer steps up the voltage?


A capacitor acts as an infinite resistance for ______.


An AC source producing emf ε = ε0 [cos (100 π s−1)t + cos (500 π s−1)t] is connected in series with a capacitor and a resistor. The steady-state current in the circuit is found to be i1 cos [(100 π s−1)t + φ1) + i2 cos [(500π s−1)t + ϕ2]. So,


An AC source is rated 220 V, 50 Hz. The average voltage is calculated in a time interval of 0.01 s. It


A bulb rated 60 W at 220 V is connected across a household supply of alternating voltage of 220 V. Calculate the maximum instantaneous current through the filament.


The dielectric strength of air is 3.0 × 106 V/m. A parallel-plate air-capacitor has area 20 cm2 and plate separation 0.10 mm. Find the maximum rms voltage of an AC source that can be safely connected to this capacitor.


Compare resistance and reactance.


A device Y is connected across an AC source of emf e = e0 sin ωt. The current through Y is given as i = i0 sin (ωt + π/2).

  1. Identify the device Y and write the expression for its reactance.
  2. Draw graphs showing a variation of emf and current with time over one cycle of AC for Y.
  3. How does the reactance of the device Y vary with the frequency of the AC? Show graphically.
  4. Draw the phasor diagram for device Y.

Suppose the initial charge on the capacitor is 6 mC. What is the total energy stored in the circuit initially? What is the total energy at later time?


Average power supplied to a capacitor over one complete cycle is ______.


When an ac voltage of 220 V is applied to the capacitor C, then ______.


The electric mains supply in our homes and offices is a voltage that varies like a sine function with time such a voltage is called ... A... and the current driven by it in a circuit is called the ... B... Here, A and B refer to ______.

Of the following about capacitive reactance which is correct?

A capacitor has capacitance C and reactance X, if capacitance and frequency become double, then reactance will be ______.


When an AC voltage of 220 V is applied to the capacitor C ______.

  1. the maximum voltage between plates is 220 V.
  2. the current is in phase with the applied voltage.
  3. the charge on the plates is in phase with the applied voltage.
  4. power delivered to the capacitor is zero.

A device ‘X’ is connected to an a.c source. The variation of voltage, current and power in one complete cycle is shown in figure.

  1. Which curve shows power consumption over a full cycle?
  2. What is the average power consumption over a cycle?
  3. Identify the device ‘X’.


An iron cored coil is connected in series with an electric bulb with an AC source as shown in figure. When iron piece is taken out of the coil, the brightness of the bulb will ______.


A resistor of 50 Ω, a capacitor of `(25/pi)` µF and an inductor of `(4/pi)` H are connected in series across an ac source whose voltage (in volts) is given by V = 70 sin (100 πt). Calculate:

  1. the net reactance of the circuit
  2. the impedance of the circuit
  3. the effective value of current in the circuit.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×